Clear experiment diagram which explains that the droplet mass determined with Stoke's law:
American Scientific, LLC sells a ready made educational kit for this: www.youtube.com/watch?v=EV3BtoMGA9c
Here's some actual footage of a droplet on a well described more one-off setup:
This American video likely from the 60's shows it with amazing contrast: www.youtube.com/watch?v=_UDT2FcyeA4
TODO how close does it get to Shannon's limit?
This one is not generally seen by software, which mostly operates starting from OSI layer 2.
They split up from the rest of the mammals after the monotremes.
Every other mammal has a placenta.
This baby in pouch thing just feels like a pre-placenta stage.
From Wikipedia:and:
Multicellularity has evolved independently at least 25 times in eukaryotes
Complex multicellular organisms evolved only in six eukaryotic groups: animals, symbiomycotan fungi, brown algae, red algae, green algae, and land plants.
Forms a normal subgroup of the general linear group.
Can represent a symmetric bilinear form as shown at matrix representation of a symmetric bilinear form, or a quadratic form.
Experiments explained:
- via the Schrödinger equation solution for the hydrogen atom it predicts:
- spectral line basic lines, plus Zeeman effect
- Schrödinger equation solution for the helium atom: perturbative solutions give good approximations to the energy levels
- double-slit experiment: I think we have a closed solution for the max and min probabilities on the measurement wall, and they match experiments
Experiments not explained: those that the Dirac equation explains like:
- fine structure
- spontaneous emission coefficients
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:where:
- is the reduced Planck constant
- is the wave function
- is the time
- is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
- we could have preferred polar coordinates instead of linear ones if the potential were symmetric around a point
- we could have more than one particle, e.g. solutions of the Schrodinger equation for two electrons, which would have e.g. and for different particles. No matter how many particles there are, we have just a single , we just add more arguments to it.
- we could have even more generalized coordinates. This is much in the spirit of Hamiltonian mechanics or generalized coordinates
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.
Crop
20
pixels from the bottom of the image:convert image.png -gravity East -chop 20x0 result.png
There are unlisted articles, also show them or only show them.