Superconducting tunnel junction Updated +Created
Specific type of Josephson junction. Probably can be made tiny and in huge numbers through photolithography.
Figure 1.
Illustration of a thin-film superconducting tunnel junction (STJ)
Source. The superconducting material is light blue, the insulating tunnel barrier is black, and the substrate is green.
Video 1.
Quantum Transport, Lecture 14: Josephson effects by Sergey Frolov (2013)
Source. youtu.be/-HUVGWTfaSI?t=878 mentions maskless electron beam lithography being used to produce STJs.
LC circuit Updated +Created
When Ciro Santilli was studying electronics at the University of São Paulo, the courses, which were heavily inspired from the USA 50's were obsessed by this one! Thinking about it, it is kind of a cool thing though.
Video 1.
Tutorial on LC resonant circuits by w2aew (2012)
Source.
Video 2.
LC circuit dampened oscillations on an oscilloscope by Queuerious Guy (2014)
Source. Finally a video that shows the oscillations without a driving AC source. The dude just move wires around on his breadboard manually, first charging the capacitor and then closing the LC circuit, and is able to see damped oscillations on the oscilloscope.
Video 3.
Introduction to LC Oscillators by USAF (1974)
Source.
Video 4. Source. Exactly what you would expect from an Eugene Khutoryansky video. The key insight is that the inductor resists to changes in current. So when current is zero, it slows down the current. And when current is high, it tries to keep it going, which recharges the other side of the capacitor.
Book by Abraham Pais Updated +Created
3D computer graphics Updated +Created
Software quality assurance Updated +Created
Source code Updated +Created
Terminal emulator Updated +Created
Once upon a time young Ciro Santilli spent lots of time evaluating the features of different terimnals. The many windows of Terminator. The pop-uppiness of Guake/Yakuake.
But then one day he met tmux, and he was enlightened
Terminal choice doesn't matter. Just use tmux.
Good television series Updated +Created
3D file format Updated +Created
Unitary matrix Updated +Created
Applications:
Quartz Updated +Created
Volume of the parallelepiped Updated +Created
Fluorescence Updated +Created
Crystallographic restriction theorem Updated +Created
nodejs/next/posts Updated +Created
Wearables Updated +Created
Next steps Updated +Created
Editor. As last time. And the one before. But now it is for real.
I guess ended up doing all the "how things should look like" features because they clarify what the website is supposed to do, and I already have my own content to bring it alive via ourbigbook --web upload.
But now I honestly feel that all the major elements of "how things should look like" have fallen into place.
And yeah, nobody else is never going to contribute as things are! WYSIWYG is a must.
I was really impressed by Trillium Notes. I should have checked it long ago. The UI is amazing, and being all Js-based, could potentially be reused for our purposes. The project itself is a single-person/full trust notetaking only for now however, so not a direct replacement to OurBigBook.
Parameters of the Standard Model Updated +Created
The growing number of parameters of the Standard Model is one big source of worry for early 21st century physics, much like the growing number of particles was a worry in the beginning of the 20th (but that one was solved by 2020).
Why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics? Updated +Created
Physicists love to talk about that stuff, but no one ever has the guts to explain it into enough detail to show its beauty!!!
Perhaps the wisest thing is to just focus entirely on the part to start with, which is the quantum electrodynamics one, which is the simplest and most useful and historically first one to come around.
Perhaps the best explanation is that if you assume those internal symmetries, then you can systematically make "obvious" educated guesses at the interacting part of the Standard Model Lagrangian, which is the fundamental part of the Standard Model. See e.g.:
One bit underlying reason is: Noether's theorem.
Notably, axelmaas.blogspot.com/2010/08/global-and-local-symmetries.html gives a good overview:
A local symmetry transformation is much more complicated to visualize. Take a rectangular grid of the billiard balls from the last post, say ten times ten. Each ball is spherical symmetric, and thus invariant under a rotation. The system now has a global and a local symmetry. A global symmetry transformation would rotate each ball by the same amount in the same direction, leaving the system unchanged. A local symmetry transformation would rotate each ball about a different amount and around a different axis, still leaving the system to the eye unchanged. The system has also an additional global symmetry. Moving the whole grid to the left or to the right leaves the grid unchanged. However, no such local symmetry exists: Moving only one ball will destroy the grid's structure.
Such global and local symmetries play an important role in physics. The global symmetries are found to be associated with properties of particles, e. g., whether they are matter or antimatter, whether they carry electric charge, and so on. Local symmetries are found to be associated with forces. In fact, all the fundamental forces of nature are associated with very special local symmetries. For example, the weak force is actually associated in a very intricate way with local rotations of a four-dimensional sphere. The reason is that, invisible to the eye, everything charged under the weak force can be characterized by a arrow pointing from the center to the surface of such a four-dimensional sphere. This arrow can be rotated in a certain way and at every individual point, without changing anything which can be measured. It is thus a local symmetry. This will become more clearer over time, as at the moment of first encounter this appears to be very strange indeed.
so it seems that that's why they are so key: local symmetries map to the forces themselves!!!
axelmaas.blogspot.com/2010/09/symmetries-of-standard-model.html then goes over all symmetries of the Standard Model uber quickly, including the global ones.

Unlisted articles are being shown, click here to show only listed articles.