Quantum field Updated +Created
Mathematical formulation of quantum field theory Updated +Created
TODO holy crap, even this is hard to understand/find a clear definition of.
The Dirac equation, OK, is a partial differential equation, so we can easily understand its definition with basic calculus. We may not be able to solve it efficiently, but at least we understand it.
But what the heck is the mathematical model for a quantum field theory? TODO someone was saying it is equivalent to an infinite set of PDEs somehow. Investigate. Related:
The path integral formulation might actually be the most understandable formulation, as shown at Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979).
The formulation of QFT also appears to be a form of infinite-dimentional calculus.
Quantum electrodynamics by Lifshitz et al. 2nd edition (1982) chapter 1. "The uncertainty principle in the relativistic case" contains an interesting idea:
The foregoing discussion suggests that the theory will not consider the time dependence of particle interaction processes. It will show that in these processes there are no characteristics precisely definable (even within the usual limitations of quantum mechanics); the description of such a process as occurring in the course of time is therefore just as unreal as the classical paths are in non-relativistic quantum mechanics. The only observable quantities are the properties (momenta,
polarizations) of free particles: the initial particles which come into interaction, and the final particles which result from the process.
Quantum electrodynamics Updated +Created
Theory that describes electrons and photons really well, and as Feynman puts it "accounts very precisely for all physical phenomena we have ever observed, except for gravity and nuclear physics" ("including the laughter of the crowd" ;-)).
Learning it is one of Ciro Santilli's main intellectual fetishes.
While Ciro acknowledges that QED is intrinsically challenging due to the wide range or requirements (quantum mechanics, special relativity and electromagnetism), Ciro feels that there is a glaring gap in this moneyless market for a learning material that follows the Middle Way as mentioned at: the missing link between basic and advanced. Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) is one of the best attempts so far, but it falls a bit too close to the superficial side of things, if only Feynman hadn't assumed that the audience doesn't know any mathematics...
The funny thing is that when Ciro Santilli's mother retired, learning it (or as she put it: "how photons and electrons interact") was also one of her retirement plans. She is a pharmacist by training, and doesn't know much mathematics, and her English was somewhat limited. Oh, she also wanted to learn how photosynthesis works (possibly not fully understood by science as that time, 2020). Ambitious old lady!!!
Combines special relativity with more classical quantum mechanics, but further generalizing the Dirac equation, which also does that: Dirac equation vs quantum electrodynamics. The name "relativistic" likely doesn't need to appear on the title of QED because Maxwell's equations require special relativity, so just having "electro-" in the title is enough.
Before QED, the most advanced theory was that of the Dirac equation, which was already relativistic but TODO what was missing there exactly?
As summarized at: youtube.com/watch?v=_AZdvtf6hPU?t=305 Quantum Field Theory lecture at the African Summer Theory Institute 1 of 4 by Anthony Zee (2004):
  • classical mechanics describes large and slow objects
  • special relativity describes large and fast objects (they are getting close to the speed of light, so we have to consider relativity)
  • classical quantum mechanics describes small and slow objects.
  • QED describes objects that are both small and fast
That video also mentions the interesting idea that:
Therefore, for small timescales, energy can vary a lot. But mass is equivalent to energy. Therefore, for small time scale, particles can appear and disappear wildly.
QED is the first quantum field theory fully developed. That framework was later extended to also include the weak interaction and strong interaction. As a result, it is perhaps easier to just Google for "Quantum Field Theory" if you want to learn QED, since QFT is more general and has more resources available generally.
Like in more general quantum field theory, there is on field for each particle type. In quantum field theory, there are only two fields to worry about:
Video 1.
Lecture 01 | Overview of Quantum Field Theory by Markus Luty (2013)
Source. This takes quite a direct approach, one cool thing he says is how we have to be careful with adding special relativity to the Schrödinger equation to avoid faster-than-light information.
Weak interaction Updated +Created
Explains beta decay. TODO why/how.
Maybe a good view of why this force was needed given beta decay experiments is: in beta decay, a neutron is getting split up into an electron and a proton. Therefore, those charges must be contained inside the neutron somehow to start with. But then what could possibly make a positive and a negative particle separate?
www.thestargarden.co.uk/Weak-nuclear-force.html gives a quick and dirty:
Beta decay could not be explained by the strong nuclear force, the force that's responsible for holding the atomic nucleus together, because this force doesn't affect electrons. It couldn't be explained by the electromagnetic force, because this does not affect neutrons, and the force of gravity is far too weak to be responsible. Since this new atomic force was not as strong as the strong nuclear force, it was dubbed the weak nuclear force.
Also interesting:
While the photon 'carries' charge, and therefore mediates the electromagnetic force, the Z and W bosons are said to carry a property known as 'weak isospin'. W bosons mediate the weak force when particles with charge are involved, and Z bosons mediate the weak force when neutral particles are involved.
Video 1. Source. Some decent visualizations of the field lines.
Quantum chromodynamics Updated +Created
Formulated as a quantum field theory.
Video 1.
Quarks, Gluon flux tubes, Strong Nuclear Force, & Quantum Chromodynamics by Physics Videos by Eugene Khutoryansky (2018)
Source. Some decent visualizations of how the field lines don't expand out like they do in electromagnetism, suggesting color confinement.
Video 2.
PHYS 485 Lecture 6: Feynman Diagrams by Roger Moore (2016)
Source. Despite the title, this is mostly about QCD.
Quantum field theory simulations Updated +Created
TODO why is it so hard to find anything non perturbative :-(
On a quantum computer...:
Video 1.
Are we living in the matrix? by David Tong (2020)
Source. Talks about how the Nielsen-Ninomiya theorem means it is impossible to simulate QFT on a computer in the case of a lattice gauge theory.
Internal and spacetime symmetries Updated +Created
The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
Quantum field theory bibliography Updated +Created
Recommendations by friend P. C.: