Register transfer level is the abstraction level at which computer chips are mostly designed.
The only two truly relevant RTL languages as of 2020 are: Verilog and VHDL. Everything else compiles to those, because that's all that EDA vendors support.
Much like a C compiler abstracts away the CPU assembly to:
- increase portability across ISAs
- do optimizations that programmers can't feasibly do without going crazy
- owns the entire stack and creates high quality highly optimized systems
- creates closed lock-in systems without inter-operability and actively fights users from owning their devices
- do they give back enough to open source, or do they leech mostly?
Convex hull of all (Cartesian product power) D-tuples, e.g. in 3D:
( 1, 1, 1)
( 1, 1, -1)
( 1, -1, 1)
( 1, -1, -1)
(-1, 1, 1)
(-1, 1, -1)
(-1, -1, 1)
(-1, -1, -1)Basically the same as classical mechanics.
Consider this is a study in failed computational number theory.
The approximation converges really slowly, and we can't easy go far enough to see that the ration converges to 1 with only awk and primes:Runs in 30 minutes tested on Ubuntu 22.10 and P51, producing:
sudo apt intsall bsdgames
cd prime-number-theorem
./main.py 100000000. It is clear that the difference diverges, albeit very slowly.
. We just don't have enough points to clearly see that it is converging to 1.0, the convergence truly is very slow. The logarithm integral approximation is much much better, but we can't calculate it in awk, sadface.
But looking at: en.wikipedia.org/wiki/File:Prime_number_theorem_ratio_convergence.svg we see that it takes way longer to get closer to 1, even at it is still not super close. Inspecting the code there we see:so OK, it is not something doable on a personal computer just like that.
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
29844570422669}, {10^16, 279238341033925}, {10^17,
2623557157654233}, {10^18, 24739954287740860}, {10^19,
234057667276344607}, {10^20, 2220819602560918840}, {10^21,
21127269486018731928}, {10^22, 201467286689315906290}, {10^23,
1925320391606803968923}, {10^24, 18435599767349200867866}};Direct consequence of Euclid's formula.
There are unlisted articles, also show them or only show them.


