Difference between recursive language and recursively enumerable language by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Continuous-variable quantum information by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
TODO synonym to analog quantum computer?
It is also possible to carry out quantum computing without qubits using processes with a continuous spectrum of measurement.
As of 2020, these approaches seem less developed/promising, but who knows.
These computers can be seen as analogous to classical non-quantum analog computers.
Some people call it "operating System".
The main parts of those systems are:
- sending multiple signals at very precise times to the system
- reading out some quantum error correction bits and sending error correcting signals back in a control loop
This gate set alone is not a set of universal quantum gates.
Notably, circuits containing those gates alone can be fully simulated by classical computers according to the Gottesman-Knill theorem, so there's no way they could be universal.
This means that if we add any number of Clifford gates to a quantum circuit, we haven't really increased the complexity of the algorithm, which can be useful as a transformational device.
TODO original experiment?
Laughlin paper: 1981 Quantized Hall conductivity in two dimensions.
Shows a cool new type of matter: Abelian anyons.
Theory that describes electrons and photons really well, and as Feynman puts it "accounts very precisely for all physical phenomena we have ever observed, except for gravity and nuclear physics" ("including the laughter of the crowd" ;-)).
Learning it is one of Ciro Santilli's main intellectual fetishes.
While Ciro acknowledges that QED is intrinsically challenging due to the wide range or requirements (quantum mechanics, special relativity and electromagnetism), Ciro feels that there is a glaring gap in this moneyless market for a learning material that follows the Middle Way as mentioned at: the missing link between basic and advanced. Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) is one of the best attempts so far, but it falls a bit too close to the superficial side of things, if only Feynman hadn't assumed that the audience doesn't know any mathematics...
The funny thing is that when Ciro Santilli's mother retired, learning it (or as she put it: "how photons and electrons interact") was also one of her retirement plans. She is a pharmacist by training, and doesn't know much mathematics, and her English was somewhat limited. Oh, she also wanted to learn how photosynthesis works (possibly not fully understood by science as that time, 2020). Ambitious old lady!!!
Experiments: quantum electrodynamics experiments.
Combines special relativity with more classical quantum mechanics, but further generalizing the Dirac equation, which also does that: Dirac equation vs quantum electrodynamics. The name "relativistic" likely doesn't need to appear on the title of QED because Maxwell's equations require special relativity, so just having "electro-" in the title is enough.
Before QED, the most advanced theory was that of the Dirac equation, which was already relativistic but TODO what was missing there exactly?
As summarized at: youtube.com/watch?v=_AZdvtf6hPU?t=305 Quantum Field Theory lecture at the African Summer Theory Institute 1 of 4 by Anthony Zee (2004):
- classical mechanics describes large and slow objects
- special relativity describes large and fast objects (they are getting close to the speed of light, so we have to consider relativity)
- classical quantum mechanics describes small and slow objects.
- QED describes objects that are both small and fast
That video also mentions the interesting idea that:Therefore, for small timescales, energy can vary a lot. But mass is equivalent to energy. Therefore, for small time scale, particles can appear and disappear wildly.
- in special relativity, we have the mass-energy equivalence
- in quantum mechanics, thinking along the time-energy uncertainty principle,
QED is the first quantum field theory fully developed. That framework was later extended to also include the weak interaction and strong interaction. As a result, it is perhaps easier to just Google for "Quantum Field Theory" if you want to learn QED, since QFT is more general and has more resources available generally.
Like in more general quantum field theory, there is on field for each particle type. In quantum field theory, there are only two fields to worry about:
- photon field
- electromagnetism field
The different only shows up for field, not with particles. For fields, there are two types of changes that we can make that can keep the Lagrangian unchanged as mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) chapter "4.5.2 Noether's Theorem for Field Theories - Spacetime":
- spacetime symmetry: act with the Poincaré group on the Four-vector spacetime inputs of the field itself, i.e. transforming into
- internal symmetry: act on the output of the field, i.e.:
From defining properties of elementary particles:
- spacetime:
- internal
From the spacetime theory alone, we can derive the Lagrangian for the free theories for each spin:Then the internal symmetries are what add the interaction part of the Lagrangian, which then completes the Standard Model Lagrangian.
Organization developing quantum hardware by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Quantum computing is hard because we want long coherence but fast control by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
Mentioned e.g. at:
These are two conflicting constraints:
- long coherence times: require isolation from external world, otherwise observation destroys quantum state
- fast control and readout: require coupling with external world
Collected Papers On Wave Mechanics by Deans (1928) by Ciro Santilli 35 Updated 2025-01-10 +Created 1970-01-01
English translation of papers that include the original Quantization as an Eigenvalue Problem by Schrödinger (1926).
Published on Nature at www.nature.com/articles/122990a0 and therefore still paywalled there as of 2023, it's ridiculous.
In 2024 it will fall into the public domain in the US.
Ciro Santilli's eulogy: effortless effort
There are unlisted articles, also show them or only show them.