Niels Bohr for the Bohr model.
Refinement of the Bohr model that starts to take quantum angular momentum into account in order to explain missing lines that would have been otherwise observed TODO specific example of such line.
They are not observe because they would violate the conservation of angular momentum.
Introduces the azimuthal quantum number and magnetic quantum number.
TODO confirm year and paper, Wikipedia points to: zenodo.org/record/1424309#.yotqe3xmjhe
If something does a quantum jump, what causes it to decide doing so at a particular time and not another? It is expected that a continuous cause would have continuous effects.
This concern was raised immediately by Rutherford while reviewing the Bohr model in 1913 as mentioned in The Quantum Story by Jim Baggott (2011) page 32.
The discovery of the photon was one of the major initiators of quantum mechanics.
Light was very well known to be a wave through diffraction experiments. So how could it also be a particle???
This was a key development for people to eventually notice that the electron is also a wave.
This process "started" in 1900 with Planck's law which was based on discrete energy packets being exchanged as exposed at On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
This ideas was reinforced by Einstein's explanation of the photoelectric effect in 1905 in terms of photon.
In the next big development was the Bohr model in 1913, which supposed non-classical physics new quantization rules for the electron which explained the hydrogen emission spectrum. The quantization rule used made use of the Planck constant, and so served an initial link between the emerging quantized nature of light, and that of the electron.
The final phase started in 1923, when Louis de Broglie proposed that in analogy to photons, electrons might also be waves, a statement made more precise through the de Broglie relations.
This event opened the floodgates, and soon matrix mechanics was published in quantum mechanical re-interpretation of kinematic and mechanical relations by Heisenberg (1925), as the first coherent formulation of quantum mechanics.
It was followed by the Schrödinger equation in 1926, which proposed an equivalent partial differential equation formulation to matrix mechanics, a mathematical formulation that was more familiar to physicists than the matrix ideas of Heisenberg.
Inward Bound by Abraham Pais (1988) summarizes his views of the main developments of the subjectit:
- Planck's on the discovery of the quantum theory (1900);
- Einstein's on the light-quantum (1905);
- Bohr's on the hydrogen atom (1913);
- Bose's on what came to be called quantum statistics (1924);
- Heisenberg's on what came to be known as matrix mechanics (1925);
- and Schroedinger's on wave mechanics (1926).
Bibliography:
- physics.stackexchange.com/questions/18632/good-book-on-the-history-of-quantum-mechanics on Physics Stack Exchange
- www.youtube.com/watch?v=5hVmeOCJjOU A Brief History of Quantum Mechanics by Sean Carroll (2020) Given at the Royal Institution.
Bagic jump between orbitals in the Bohr model. Analogous to the later wave function collapse in the Schrödinger equation.
Quantum numbers appear directly in the Schrödinger equation solution for the hydrogen atom.
However, it very cool that they are actually discovered before the Schrödinger equation, and are present in the Bohr model (principal quantum number) and the Bohr-Sommerfeld model (azimuthal quantum number and magnetic quantum number) of the atom. This must be because they observed direct effects of those numbers in some experiments. TODO which experiments.
E.g. The Quantum Story by Jim Baggott (2011) page 34 mentions:This refers to forbidden mechanism. TODO concrete example, ideally the first one to be noticed. How can you notice this if the energy depends only on the principal quantum number?
As the various lines in the spectrum were identified with different quantum jumps between different orbits, it was soon discovered that not all the possible jumps were appearing. Some lines were missing. For some reason certain jumps were forbidden. An elaborate scheme of ‘selection rules’ was established by Bohr and Sommerfeld to account for those jumps that were allowed and those that were forbidden.
Appears in the Schrödinger equation.
Equals the quantum of angular momentum in the Bohr model.
- 1859-1900: see Section "Black-body radiation experiment". Continuously improving culminating in Planck's law black-body radiation and Planck's law
- 1905 photoelectric effect and the photon
- TODO experiments
- 1905 Einstein's photoelectric effect paper. Planck was intially thinking that light was continuous, but the atoms vibrated in a discrete way. Einstein's explanation of the photoelectric effect throws that out of the window, and considers the photon discrete.
- 1913 atomic spectra and the Bohr model
- 1885 Balmer series, an empirical formula describes some of the lines of the hydrogen emission spectrum
- 1888 Rydberg formula generalizes the Balmer series
- 1896 Pickering series makes it look like a star has some new kind of hydrogen that produces half-integer entries in the Pickering series
- 1911 Bohr visits J. J. Thomson in the University of Cambridge for his postdoc, but they don't get along well
- Bohr visits Rutherford at the University of Manchester and decides to transfer there. During this stay he becomes interested in problems of the electronic structure of the atom.Bohr was forced into a quantization postulate because spinning electrons must radiate energy and collapse, so he postulated that electrons must somehow magically stay in orbits without classically spinning.
- 1913 february: young physics professor Hans Hansen tells Bohr about the Balmer series. This is one of the final elements Bohr needed.
- 1913 Bohr model published predicts atomic spectral lines in terms of the Planck constant and other physical constant.
- explains the Pickering series as belonging to inoized helium that has a single electron. The half term in the spectral lines of this species come from the nucleus having twice the charge of hydrogen.
- 1913 March: during review before publication, Rutherford points out that instantaneous quantum jumps don't seem to play well with causality.
- 1916 Bohr-Sommerfeld model introduces angular momentum to explain why some lines are not observed, as they would violate the conservation of angular momentum.
The idea the the wave function of a small observed system collapses "obviously" cannot be the full physical truth, only a very useful approximation of reality.
Because then are are hard pressed to determine the boundary between what collapses and what doesn't, and there isn't such a boundary, as everything is interacting, including the observer.
The many-worlds interpretation is an elegant explanation for this. Though it does feel a bit sad and superfluous.