web.archive.org/web/20181119214326/https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf gives it in raw:The breakdown is:
- the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
- the speed of light in vacuum c is 299 792 458 m/s
- the Planck constant h is 6.626 070 15 × J s
- the elementary charge e is 1.602 176 634 × C
- the Boltzmann constant k is 1.380 649 × J/K
- the Avogadro constant NA is 6.022 140 76 × mol
- the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W,
- actually use some physical constant:
the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
Defines the second in terms of caesium-133 experiments. The beauty of this definition is that we only have to count an integer number of discrete events, which is what allows us to make things precise.the speed of light in vacuum c is 299 792 458 m/s
Defines the meter in terms of speed of light experiments. We already had the second from the previous definition.the Planck constant h is 6.626 070 15 × J s
the elementary charge e is 1.602 176 634 × C
- arbitrary definitions based on the above just to match historical values as well as possible:
the Boltzmann constant k is 1.380 649 × J/K
the Avogadro constant NA is 6.022 140 76 × mol
the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W
Predicts fine structure.
Bibliography:
Dirac equation for the electron and hydrogen Hamiltonian by Barton Zwiebach (2019)
Source. Uses perturbation theory to get to the relativistic corrections of fine structure! Part of MIT 8.06 Quantum Physics III, Spring 2018 by Barton ZwiebachHow To Solve The Dirac Equation For The Hydrogen Atom | Relativistic Quantum Mechanics by Dietterich Labs (2018)
Source. 2s/2p energy split in the hydrogen emission spectrum, not predicted by the Dirac equation, but explained by quantum electrodynamics, which is one of the first great triumphs of that theory.
Note that for atoms with multiple electrons, 2s/2p shifts are expected: Why does 2s have less energy than 1s if they have the same principal quantum number?. The surprise was observing that on hydrogen which only has one electron.
Initial experiment: Lamb-Retherford experiment.
On the return from the train from the Shelter Island Conference in New York, Hans Bethe managed to do a non-relativistic calculation of the Lamb shift. He then published as The Electromagnetic Shift of Energy Levels by Hans Bethe (1947) which is still paywalled as of 2021, fuck me: journals.aps.org/pr/abstract/10.1103/PhysRev.72.339 by Physical Review.
The Electromagnetic Shift of Energy Levels Freeman Dyson (1948) published on Physical Review is apparently a relativistic analysis of the same: journals.aps.org/pr/abstract/10.1103/PhysRev.73.617 also paywalled as of 2021.
TODO how do the infinities show up, and how did people solve them?
Lamb shift by Dr. Nissar Ahmad (2020)
Source. Whiteboard Lecture about the phenomena, includes description of the experiment. Seems quite good.Murray Gell-Mann - The race to calculate the relativistic Lamb shift by Web of Stories (1997)
Source. Quick historical overview. Mentions that Richard Feynman and Julian Schwinger were using mass renormalization and cancellation if infinities. He says that French and Weisskopf actually managed to do the correct calculations first with a less elegant method.www.mdpi.com/2624-8174/2/2/8/pdf History and Some Aspects of the Lamb Shift by G. Jordan Maclay (2019)
Freeman Dyson - The Lamb shift by Web of Stories (1998)
Source. Mentions that he moved to the USA from the United Kingdom specifically because great experiments were being carried at Columbia University, which is where the Lamb-Retherford experiment was done, and that Isidor Isaac Rabi was the head at the time.
He then explains mass renormalization briefly: instead of calculating from scratch, you just compare the raw electron to the bound electron and take the difference. Both of those have infinities in them, but the difference between them cancels out those infinities.
Hans Bethe - The Lamb shift (1996)
Source. Previously known as "Food From Electricity", "NeoCarbonFood" sounds like a more commercializable version of it.
Uses electricity to electrolyse water into hydrogen and oxygen molecules, and then use bacteria that do hydrogen chemosynthesis to convert it into food.
Searching for "H" for hydrogen leads to: physics.nist.gov/cgi-bin/ASD/lines1.pl?spectra=H&limits_type=0&low_w=&upp_w=&unit=1&submit=Retrieve+Data&de=0&format=0&line_out=0&en_unit=0&output=0&bibrefs=1&page_size=15&show_obs_wl=1&show_calc_wl=1&unc_out=1&order_out=0&max_low_enrg=&show_av=2&max_upp_enrg=&tsb_value=0&min_str=&A_out=0&intens_out=on&max_str=&allowed_out=1&forbid_out=1&min_accur=&min_intens=&conf_out=on&term_out=on&enrg_out=on&J_out=on
Ciro Santilli once visited the chemistry department of a world leading university, and the chemists there were obsessed with NMR. They had small benchtop NMR machines. They had larger machines. They had a room full of huge machines. They had them in corridors and on desk tops. Chemists really love that stuff. More precisely, these are used for NMR spectroscopy, which helps identify what a sample is made of.
Introduction to NMR by Allery Chemistry
. Source. - only works with an odd number of nucleons
- apply strong magnetic field, this separates the energy of up and down spins. Most spins align with field.
- send radio waves into sample to make nucleons go to upper energy level. We can see that the energy difference is small since we are talking about radio waves, low frequency.
- when nucleon goes back down, it re-emits radio waves, and we detect that. TODO: how do we not get that confused with the input wave, which is presumably at the same frequency? It appears to send pulses, and then wait for the response.
How to Prepare and Run a NMR Sample by University of Bath (2017)
Source. This is a more direct howto, cool to see. Uses a Bruker Corporation 300. They have a robotic arm add-on. Shows spectrum on computer screen at the end. Shame no molecule identification after that!This video has the merit of showing real equipment usage, including sample preparation.
Says clearly that NMR is the most important way to identify organic compounds.
- youtu.be/uNM801B9Y84?t=41 lists some of the most common targets, including hydrogen and carbon-13
- youtu.be/uNM801B9Y84?t=124 ethanol example
- youtu.be/uNM801B9Y84?t=251 they use solvents where all protium is replaced by deuterium to not affect results. Genius.
- youtu.be/uNM801B9Y84?t=354 usually they do 16 radio wave pulses
Introductory NMR & MRI: Video 01 by Magritek (2009)
Source. Precession and Resonance. Precession has a natural frequency for any angle of the wheel.Introductory NMR & MRI: Video 02 by Magritek (2009)
Source. The influence of temperature on spin statistics. At 300K, the number of up and down spins are very similar. As you reduce temperature, we get more and more on lower energy state.Introductory NMR & MRI: Video 03 by Magritek (2009)
Source. The influence of temperature on spin statistics. At 300K, the number of up and down spins are very similar. As you reduce temperature, we get more and more on lower energy state.NMR spectroscopy visualized by ScienceSketch
. Source. 2020. Decent explanation with animation. Could go into a bit more numbers, but OK.Is the only atom that has a closed form solution, which allows for very good predictions, and gives awesome intuition about the orbitals in general.
It is arguably the most important solution of the Schrodinger equation.
In particular, it predicts:
- the major spectral line of the hydrogen atom by taking the difference between energy levels
The explicit solution can be written in terms of spherical harmonics.
Originally done with (neutral) silver atoms in 1921, but even clearer theoretically was the hydrogen reproduction in 1927 by T. E. Phipps and J. B. Taylor.
The hydrogen experiment was apparently harder to do and the result is less visible, TODO why: physics.stackexchange.com/questions/33021/why-silver-atoms-were-used-in-stern-gerlach-experiment
The Stern-Gerlach Experiment by Educational Services, Inc (1967)
Source. Featuring MIT Professor Jerrold R. Zacharias. Amazing experimental setup demonstration, he takes apart much of the experiment to show what's going on.