2019 redefinition of the SI base units Updated +Created
web.archive.org/web/20181119214326/https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf gives it in raw:
  • the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
  • the speed of light in vacuum c is 299 792 458 m/s
  • the Planck constant h is 6.626 070 15 × J s
  • the elementary charge e is 1.602 176 634 × C
  • the Boltzmann constant k is 1.380 649 × J/K
  • the Avogadro constant NA is 6.022 140 76 × mol
  • the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W,
The breakdown is:
  • actually use some physical constant:
    • the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
      Defines the second in terms of caesium-133 experiments. The beauty of this definition is that we only have to count an integer number of discrete events, which is what allows us to make things precise.
    • the speed of light in vacuum c is 299 792 458 m/s
      Defines the meter in terms of speed of light experiments. We already had the second from the previous definition.
    • the Planck constant h is 6.626 070 15 × J s
      Defines the kilogram in terms of the Planck constant.
    • the elementary charge e is 1.602 176 634 × C
      Defines the Coulomb in terms of the electron charge.
  • arbitrary definitions based on the above just to match historical values as well as possible:
    • the Boltzmann constant k is 1.380 649 × J/K
      Arbitrarily defines temperature from previously defined energy (J) to match historical values.
    • the Avogadro constant NA is 6.022 140 76 × mol
      Arbitrarily defines the mol to match historical values. In particular, the kilogram is not an exact multiple of the weight of an atom of hydrogen.
    • the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W
      Arbitrarily defines the Candela in terms of previous values to match historical records. The most useless unit comes last as you'd expect.
Ampere in the 2019 redefinition of the SI base units Updated +Created
Starting in the 2019 redefinition of the SI base units, the elementary charge is assigned a fixed number, and the Ampere is based on it and on the second, which is beautiful.
This choice is not because we attempt to count individual electrons going through a wire, as it would be far too many to count!
Rather, it is because because there are two crazy quantum mechanical effects that give us macroscopic measures that are directly related to the electron charge. www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that the two effects are:
Those effect work because they also involve dividing by the Planck constant, the fundamental constant of quantum mechanics, which is also tiny, and thus brings values into a much more measurable order of size.
Caesium standard Updated +Created
Uses the frequency of the hyperfine structure of caesium-133 ground state, i.e spin up vs spin down of its valence electron , to define the second.
International System of Units definition of the second since 1967, because this is what atomic clocks use.
TODO why does this have more energy than the hyperfine split of the hydrogen line given that it is further from the nucleus?
Dimension (system of units) Updated +Created
A dimension in a system of units is something like length, weight or time, without considering how to assign numerical values ot them, which requires units of measurement such as the meter, kilogram or second.
Talking about dimensions can be useful when explaining new derived units without worrying about the exact units involved. See e.g. this table: en.wikipedia.org/w/index.php?title=Lumen_(unit)&oldid=1233810964#SI_photometric_units
Hyperfine structure Updated +Created
Small splits present in all levels due to interaction between the electron spin and the nuclear spin if it is present, i.e. the nucleus has an even number of nucleons.
As the name suggests, this energy split is very small, since the influence of the nucleus spin on the electron spin is relatively small compared to other fine structure.
TODO confirm: does it need quantum electrodynamics or is the Dirac equation enough?
The most important examples:
Quartz clock Updated +Created
Video 1.
How a quartz watch works by Steve Mould (2017)
Source. Mentions feedback loop loop with the quartz tuning fork for the piezoelectricity and an amplifier. Also mentions the choice of 32768 Hertz () as the first power of 2 that is outside of the human hearing range, and then how a frequency divider is used to reduce the frequency to get the second counter.