- the basis for the most promising 2019 quantum computing implementation: superconducting quantum computer
- Josephson voltage standard: the most practical/precise Volt standard, which motivated the definition of the ampere in the 2019 redefinition of the SI base units
- SQUID devices, which are:
- very precise magnetometer
- the basis for superconducting quantum computers
This notation is designed to be relatively easy to write. This is achieved by not drawing ultra complex ASCII art boxes of every component. It would be slightly more readable if we did that, but prioritizing the writer here.
Two wires are only joined if but the following are:
+
is given. E.g. the following two wires are not joined: |
--|--
|
|
--+--
|
Simple symmetric components:
-
,+
and|
: wireAC
: AC source. Parameters:e.g.:Hz
: frequencyV
: peak voltage
If only one side is given, the other is assumed to be at a groundAC_1Hz_2V
G
.C
: capacitorG
: ground. Often used together withDC
, e.g.:means applying a voltage of 10 V across a 10 Ohm resistor, which would lead to a current of 1 ADC_10---R_10---G
L
: inductorMICROPHONE
. As a multi-letter symmetric component, you can connect the two wires anywhere, e.g.or:---MICROPHONE---
| MICROPHONE |
SPEAKER
R
: resistorSQUID
: SQUID deviceX
: Josephson junction
Asymmetric components have multiple letters indicating different ports. The capital letter indicates the device, and lower case letters the ports. The wires then go into the ports:
D
: diodeSample usage in a circuit:a
: anode (where electrons can come in from)c
: cathode
Can also be used vertically like aany other circuit:--aDc--
We can also change the port order, the device is still the same due to capital| a D c |
D
:--cDa-- | Dac-- | Dca-- | --caD
DC
DC source. Ports:E.g. a 10 V source with a 10 Ohm resistor would be:p
: positiven
: negative
If only one side is given, the other is assumed to be at a the ground+---pDC_10_n---+ | | +----R_10------+
G
. We can also omitp
andm
in that case and assume thatp
is the one used, e.g. the above would be equivalent to:If the voltage is not given, it is assumed to be a potentiometer.DC_10---R_10---G
T
: transistor. The ports aresgTd
:Sample usage in a circuit:s
: sourceg
: gated
: gate
All the following are also equivalent:---+ | --sgTd--
| g --sTd-- | --Tsgd-- |
I
: electric current source. Ports:s
: electron sourced
: electron destination
V
: Voltmeter. Ports:If we don't need to specify explicit positive and negative sides, we can just use:p
: positiven
: negative
without any ports. This is notably often the case for AC circuits.---V---
Optionaly, we can also add the sides as in:
Numbers characterizing components are put just next to each component with an underscore. When there is only one parameter, standard units are assumed, e.g.:means:Micro is denoted as
+-----+
| |
C_1p R_2k
| |
+-----+
- a capacitor with 1 pico Faraday
- a resistor with 2 k Ohms
u
.Wires can just freely come in and out of specs of a component, they are then just connected to the component, e.g.:means applying a voltage of 10 V across a 10 Ohm resistor, which would lead to a current of 1 A
DC_10---R_10---G
Nature is a black box, right?
You don't need to understand the from first principles derivation of every single phenomena.
And most important of all: you should not start learning phenomena by reading the from first principles derivation.
Instead, you should see what happens in experiments, and how matches some known formula (which hopefully has been derived from first principles).
Only open the boxes (understand from first principles derivation) if the need is felt!
E.g.:
- you don't need to understand everything about why SQUID devices have their specific I-V curve curve. You have to first of all learn what the I-V curve would be in an experiment!
- you don't need to understand the fine details of how cavity magnetrons work. What you need to understand first is what kind of microwave you get from what kind of input (DC current), and how that compares to other sources of microwaves
- lasers: same
Physics is all about predicting the future. If you can predict the future with an end result, that's already predicting the future, and valid.
Implementations:
- Hall effect based, i.e. a Hall effect sensor
- SQUID device
Can be used as a very precise magnetometer.
There are high temperature yttrium barium copper oxide ones that work on liquid nitrogen.
Superconducting quantum computer need non-linear components Updated 2024-12-15 +Created 1970-01-01
Non-linearity is needed otherwise the input energy would just make the state go to higher and higher energy levels, e.g. from 1 to 2. But we only want to use levels 0 and 1.
The way this is modelled in by starting from a pure LC circuit, which is an harmonic oscillator, see also quantum LC circuit, and then replacing the linear inductor with a SQUID device, e.g. mentioned at: youtu.be/eZJjQGu85Ps?t=1655 Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)".
Based on the Josephson effect. Yet another application of that phenomenal phenomena!
Philosophically, superconducting qubits are good because superconductivity is macroscopic.
It is fun to see that the representation of information in the QC basically uses an LC circuit, which is a very classical resonator circuit.
As mentioned at en.wikipedia.org/wiki/Superconducting_quantum_computing#Qubit_archetypes there are actually a few different types of superconducting qubits:
- flux
- charge
- phase
and hybridizations of those such as:
Input:
- microwave radiation to excite circuit, or do nothing and wait for it to fall to 0 spontaneously
- interaction: TODO
- readout: TODO
Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
| |
X C
| |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
X
in the diagram as per-Ciro's ASCII art circuit diagram notation:+-------+ +-------+
| | | |
| Q_1() |---X---| Q_2() |
| | | |
+-------+ +-------+
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.
Upside: superconducting above 92K, which is above the 77K of liquid nitrogen, and therefore much much cheaper to obtain and maintain than liquid helium.
Downside: it is brittle, so how do you make wires out of it? Still, can already be used in certain circuits, e.g. high temperature SQUID devices.