Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
- total angular momentum: determined by the azimuthal quantum number
- angular momentum in one direction ( by convention): determined by the magnetic quantum number
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
Adds special relativity to the Schrödinger equation, and the following conclusions come basically as a direct consequence of this!
Experiments explained:
- spontaneous emission coefficients.
- fine structure, notably for example Dirac equation solution for the hydrogen atom
- antimatter
- particle creation and annihilation
Experiments not explained: those that quantum electrodynamics explains like:See also: Dirac equation vs quantum electrodynamics.
- Lamb shift
- TODO: quantization of the electromagnetic field as photons?
The Dirac equation is a set of 4 partial differential equations on 4 complex valued wave functions. The full explicit form in Planck units is shown e.g. in Video 1. "Quantum Mechanics 12a - Dirac Equation I by ViaScience (2015)" at youtu.be/OCuaBmAzqek?t=1010:Then as done at physics.stackexchange.com/questions/32422/qm-without-complex-numbers/557600#557600 from why are complex numbers used in the Schrodinger equation?, we could further split those equations up into a system of 8 equations on 8 real-valued functions.
Clear experiment diagram which explains that the droplet mass determined with Stoke's law:
American Scientific, LLC sells a ready made educational kit for this: www.youtube.com/watch?v=EV3BtoMGA9c
Here's some actual footage of a droplet on a well described more one-off setup:
This American video likely from the 60's shows it with amazing contrast: www.youtube.com/watch?v=_UDT2FcyeA4
Used to explain the black-body radiation experiment.
Published as: On the Theory of the Energy Distribution Law of the Normal Spectrum by Max Planck (1900).
The Quantum Story by Jim Baggott (2011) page 9 mentions that Planck apparently immediately recognized that Planck constant was a new fundamental physical constant, and could have potential applications in the definition of the system of units (TODO where was that published):This was a visionary insight, and was finally realized in the 2019 redefinition of the SI base units.
Planck wrote that the constants offered: 'the possibility of establishing units of length, mass, time and temperature which are independent of specific bodies or materials and which necessarily maintain their meaning for all time and for all civilizations, even those which are extraterrestrial and nonhuman, constants which therefore can be called "fundamental physical units of measurement".'
TODO how can it be derived from theoretical principles alone? There is one derivation at; en.wikipedia.org/wiki/Planck%27s_law#Derivation but it does not seem to mention the Schrödinger equation at all.
Quantum entanglement is often called spooky/surprising/unintuitive, but they key question is to understand why.
To understand that, you have to understand why it is fundamentally impossible for the entangled particle pair be in a predefined state according to experiments done e.g. where one is deterministically yes and the other deterministically down.
In other words, why local hidden-variable theory is not valid.
How to generate entangled particles:
- particle decay, notably pair production
- for photons, notably: spontaneous parametric down-conversion, e.g.: www.youtube.com/watch?v=tn1sEaw1K2k "Shanni Prutchi Construction of an Entangled Photon Source" by HACKADAY (2015). Estimatd price: 5000 USD.
- www.youtube.com/watch?v=1Z9wo2CzJO8 "Schrodinger equation solved numerically in 3D" by Tetsuya Matsuno. 3D hydrogen atom, code may be hidden in some paper, maybe
- www.youtube.com/playlist?list=PLdCdV2GBGyXM0j66zrpDy2aMXr6cgrBJA "Computational Quantum Mechanics" by Let's Code Physics. Uses a 1D trinket.io.
- www.youtube.com/watch?v=BBt8EugN03Q Simulating Quantum Systems [Split Operator Method] by LeiosOS (2018)
- www.youtube.com/watch?v=86x0_-JGlGQ Simulating the Quantum World on a Classical Computer by Garnet Chan (2016) discusses how modeling only local entanglement can make certain simulations feasible
Spin is one of the defining properties of elementary particles, i.e. number that describes how an elementary particle behaves, much like electric charge and mass.
Possible values are half integer numbers: 0, 1/2, 1, 3/2, and so on.
The approach shown in this section: Section "Spin comes naturally when adding relativity to quantum mechanics" shows what the spin number actually means in general. As shown there, the spin number it is a direct consequence of having the laws of nature be Lorentz invariant. Different spin numbers are just different ways in which this can be achieved as per different Representation of the Lorentz group.
Video 1. "Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)" explains nicely how:
- incorporated into the Dirac equation as a natural consequence of special relativity corrections, but not naturally present in the Schrödinger equation, see also: the Dirac equation predicts spin
- photon spin can be either linear or circular
- the linear one can be made from a superposition of circular ones
- straight antennas produce linearly polarized photos, and Helical antennas circularly polarized ones
- a jump between 2s and 2p in an atom changes angular momentum. Therefore, the photon must carry angular momentum as well as energy.
- cannot be classically explained, because even for a very large estimate of the electron size, its surface would have to spin faster than light to achieve that magnetic momentum with the known electron charge
- as shown at Video "Quantum Mechanics 12b - Dirac Equation II by ViaScience (2015)", observers in different frames of reference see different spin states
The wave equation can be seen as infinitely many infinitesimal coupled oscillators Updated 2024-12-15 +Created 1970-01-01
TODO confirm, see also: coupled oscillators. And then this idea can be used to define/motivate quantum field theory in terms of quantum harmonic oscillators with second quantization.
- youtu.be/SMmFgIEGYtw?t=324 Quantum Field Theory 2a - Field Quantization I by ViaScience (2018)