Derived from classical first principles, matches Planck's law for low frequencies, but diverges at higher frequencies.
- The Quantum Story by Jim Baggott (2011) page 10 mentions:and the footnote comments:
Early examples of such cavities included rather expensive closed cylinders made from porcelain and platinum.
- 1859-60 Gustav Kirchhoff demonstrated that the ratio of emitted to absorbed energy depends only on the frequency of the radiation and the temperature inside the cavity
- 1896 Wien approximation seems to explain existing curves well
- 1900 expriments by Otto Lummer and Ernst Pringsheim show Wien approximation is bad for lower frequencies
- 1900-10-07 Heinrich Rubens visits Planck in Planck's villa in the Berlin suburb of Grünewald and informs him about new experimental he and Ferdinand Kurlbaum obtained, still showing that Wien approximation is bad
- 1900 Planck's law matches Lummer and Pringsheim's experiments well. Planck forced to make the "desperate" postulate that energy is exchanged in quantized lumps. Not clear that light itself is quantized however, he thinks it might be something to do with allowed vibration modes of the atoms of the cavity rather.
- 1900 Rayleigh-Jeans law derived from classical first principles matches Planck's law for low frequencies, but diverges at higher frequencies.
Black-body Radiation Experiment by sciencesolution (2008)
Source. A modern version of the experiment with a PASCO scientific EX-9920 setup.What is the Ultraviolet Catastrophe? by Physics Explained (2020)
Source. One important quantum mechanics experiment, which using quantum effects explain the dependency of specific heat capacity on temperature, an effect which is not present in the Dulong-Petit law.
This is the solid-state analogue to the black-body radiation problem. It is also therefore a quantum mechanics-specific phenomenon.
It can be seen as the limit case of an Einstein solid at high temperatures. At lower temperatures, the heat capacity depends on temperature.
Wikipedia mentions that it is completely analogous to Planck's law.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





