Packing problems by Wikipedia Bot 0
Packing problems are a class of optimization problems that involve arranging a set of items within a defined space in the most efficient way possible. These problems often arise in various fields such as operations research, logistics, manufacturing, computer science, and graph theory. The goal is usually to maximize the utilization of space, minimize waste, or achieve an optimal configuration based on certain criteria.
Classical limit by Ciro Santilli 37 Updated +Created
The idea tha taking the limit of the non-classical theories for certain parameters (relativity and quantum mechanics) should lead to the classical theory.
It appears that classical limit is only very strict for relativity. For quantum mechanics it is much more hand-wavy thing. See also: Subtle is the Lord by Abraham Pais (1982) page 55.
Siegel's theorem on integral points is a significant result in number theory, particularly in the study of Diophantine equations and the distribution of rational and integral solutions to these equations. The theorem essentially states that for a certain class of algebraic varieties, known as "affine" or "projective" varieties of general type, there are only finitely many integral (or rational) points on these varieties.
Classic RISC pipeline by Ciro Santilli 37 Updated +Created
Classification of finite fields by Ciro Santilli 37 Updated +Created
There's exactly one field per prime power, so all we need to specify a field is give its order, notated e.g. as .
Every element of a finite field satisfies .
It is interesting to compare this result philosophically with the classification of finite groups: fields are more constrained as they have to have two operations, and this leads to a much simpler classification!
Classification of finite groups by Ciro Santilli 37 Updated +Created
As shown in Video "Simple Groups - Abstract Algebra by Socratica (2018)", this can be split up into two steps:This split is sometimes called the "Jordan-Hölder program" in reference to the authors of the jordan-Holder Theorem.
Good lists to start playing with:
It is generally believed that no such classification is possible in general beyond the simple groups.
Classification of finite rings by Ciro Santilli 37 Updated +Created
accounts for them all, which we know how to do due to the classification of finite fields.
So we see that the classification is quite simple, much like the classification of finite fields, and in strict opposition to the classification of finite simple groups (not to mention the 2023 lack of classification for non simple finite groups!)
ffplay by Ciro Santilli 37 Updated +Created
Awesome tool to view quick stuff quickly without generating files. Unfortunately it doesn't support all options that the ffmpeg CLI supports, e.g. ffplay multiple input files. One day, one day.
The Sum of Four Cubes Problem refers to the mathematical question of whether every integer can be expressed as the sum of four integer cubes.
The "sums of three cubes" problem refers to the mathematical challenge of expressing certain integers as the sum of three integer cubes. Specifically, the equation can be stated as: \[ n = x^3 + y^3 + z^3 \] where \( n \) is the integer we want to express, and \( x \), \( y \), and \( z \) are also integers.
"The Monkey and the Coconuts" is a traditional folk tale that often appears in various cultures, with different versions and details. The story typically involves a group of monkeys and a supply of coconuts that they find. The narrative usually revolves around themes such as intelligence, teamwork, problem-solving, and sometimes morality. In one common version of the tale, a group of monkeys discovers a coconut tree and figures out how to gather the coconuts.
Tijdeman's theorem is a result in number theory concerning the equation \( x^k - y^m = 1 \), where \( x \), \( y \) are positive integers, and \( k \), \( m \) are integers greater than or equal to 2. The theorem states that the only solutions in positive integers \( (x, y, k, m) \) to this equation occur for certain specific values.
The AMNH Exhibitions Lab, part of the American Museum of Natural History (AMNH) in New York City, is an innovative space dedicated to the design, development, and testing of new museum exhibitions. It serves as a collaborative environment where curators, educators, designers, and other professionals can come together to explore and create engaging and educational exhibits that align with the museum's mission to inspire understanding of the natural world and the universe.
Laplace transform by Ciro Santilli 37 Updated +Created
Video 1.
The Laplace Transform: A Generalized Fourier Transform by Steve Brunton (2020)
Source. Explains how the Laplace transform works for functions that do not go to zero on infinity, which is a requirement for the Fourier transform. No applications in that video yet unfortunately.
The Holyland Model of Jerusalem is a highly detailed scale model of the city of Jerusalem, representing its landscape and architecture at a specific point in history. Typically, the model depicts Jerusalem as it was during the Second Temple period, around 66 AD. This period is significant in Jewish history, as it was during this time that the Second Temple stood before its destruction by the Romans in 70 AD.
Clear client-side storage by Ciro Santilli 37 Updated +Created

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact