Noël Carroll is an influential American philosopher and film scholar known for his work in aesthetics, philosophy of art, and film theory. He has written extensively about the nature of art, the emotional responses evoked by films, and the ways in which audiences interact with various forms of media. Carroll is particularly recognized for his contributions to the philosophical understanding of the horror genre, the narrative structures of films, and the concept of artistic experience.
"On Certainty" is a philosophical work by Ludwig Wittgenstein, composed in the latter part of his life and published posthumously in 1969. It consists of a series of remarks that explore the nature of certainty, belief, doubt, and the foundations of knowledge. The text responds to a variety of issues related to epistemology, particularly the question of how we can possess certain kinds of knowledge without needing further justification or evidence.
The Ocean Tracking Network (OTN) is a global initiative focused on studying and monitoring the movement and behavior of marine animals in the ocean. Established to enhance our understanding of marine ecosystems and the implications of human activities on these habitats, OTN employs a network of acoustic receivers and satellite tracking technologies to gather data on various marine species, including fish, sharks, and marine mammals.
The Kibble balance is so precise and reproducible that it was responsible for the 2019 redefinition of the Kilogram.
NIST-4 Kibble balance
. Source. It relies rely on not one, but three macroscopic quantum mechanical effects:How cool is that! As usual, the advantage of those effects is that they are discrete, and have very fixed values that don't depend either:One downside of using some quantum mechanical effects is that you have to cool everything down to 5K. But that's OK, we've got liquid helium!
- atomic spectra: basis for the caesium standard which produces precise time and frequency
- Josephson effect: basis for the Josephson voltage standard, which produces precise voltage
- quantum Hall effect: basis for the quantum Hall effect, which produces precise electrical resistance
- on the physical dimensions of any apparatus (otherwise fabrication precision would be an issue)
- small variations of temperature, magnetic field and so on
The operating principle is something along:Then, based on all this, you can determine how much the object weights.
- generate a precise frequency with a signal generator, ultimately calibrated by the Caesium standard
- use that precise frequency to generate a precise voltage with a Josephson voltage standard
- convert that precise voltage into a precise electric current by using the quantum Hall effect, which produces a very precise electrical resistance
- use that precise current to generate a precise force on the object your weighing, pushing it against gravity
- then you precisely measure both:
- local gravity with a gravimeter
- the displacement acceleration of the object with a laser setup
- youtu.be/ZfNygYuuVAE?t=854: they don't actually use the Quantum Hall effect device during operation, they only use it to calibrate other non-quantum resistors
Uses the frequency of the hyperfine structure of caesium-133 ground state, i.e spin up vs spin down of its valence electron , to define the second.
International System of Units definition of the second since 1967, because this is what atomic clocks use.
TODO why does this have more energy than the hyperfine split of the hydrogen line given that it is further from the nucleus?
Currently an informal name for the Standard Model
Chronological outline of the key theories:
- Maxwell's equations
- Schrödinger equation
- Date: 1926
- Numerical predictions:
- hydrogen spectral line, excluding finer structure such as 2p up and down split: en.wikipedia.org/wiki/Fine-structure_constant
- Dirac equation
- Date: 1928
- Numerical predictions:
- hydrogen spectral line including 2p split, but excluding even finer structure such as Lamb shift
- Qualitative predictions:
- Antimatter
- Spin as part of the equation
- quantum electrodynamics
- Date: 1947 onwards
- Numerical predictions:
- Qualitative predictions:
- Antimatter
- spin as part of the equation
In the standard formulation of Maxwell's equations, the electric current is a convient but magic input.
Would it be possible to use Maxwell's equations to solve a system of pointlike particles such as electrons instead?
The following suggest no, or only for certain subcases less general than Maxwell's equations:
This is the type of thing where the probability aspect of quantum mechanics seems it could "help".
Alternative to the Lorentz gauge, but less used in general as it is not as nice for relativity invariance.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact







