The normal navigation to them was paywalled, but the static files are served without login checks if you know their URL. One way to go about it is to search by prefix on the Wayback Machine: web.archive.org/web/*/https://www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/*
The last handbooks we can find are 2020/2021, they might have move to a new more properly paywalled location after that year.
- 2020/2021:
- Year 1: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y1-ug-handbook-2020-2021-final-47501.pdf
- Year 2: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y2-ug-handbook-2020-2021-final-47495.pdf
- Year 3: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y3-ug-handbook-2020-2021-final-47496.pdf
- Year 4: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y4-ug-handbook-2020-2021-final-47497.pdf
- Physics and Philosophy: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/pphandbook-47524.pdf
- 2019/2020. They seem to have split the handbook up per year after some point.
- Year 1: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y1-ug-handbook-2019-2020-final-8october2019-45541.pdf
- Year 2: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y2-ug-handbook-2019-2020-final-8-october2019-45542.pdf
- Year 3: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y3-ug-handbook-2019-2020-updated-21november2019-45955.pdf
- Year 4: www2.physics.ox.ac.uk/sites/default/files/contentblock/2011/06/03/y4-ug-handbook-2019-2020-final-8october2019-45544.pdf
Group of students that represent students academic views about the courses.
users.physics.ox.ac.uk/~lvovsky/B3/ contain assorted PDFs from between 2015 and 2019
Syllabus reads:
- Multi-electron atoms: central field approximation, electron configurations, shell structure, residual electrostatic interaction, spin orbit coupling (fine structure).
- Spectra and energy levels: Term symbols, selection rules, X-ray notation, Auger transitions.
- Hyperfine structure; effects of magnetic fields on fine and hyperfine structure. Presumably Zeeman effect.
- Two level system in a classical light field: Rabi oscillations and Ramsey fringes, decaying states; Einstein
- A and B coefficients; homogeneous and inhomogeneous broadening of spectral lines; rate equations.
- Optical absorption and gain: population inversion in 3- and 4-level systems; optical gain cross section; saturated absorption and gain.
Professor in 2000s seems to beBut as of 2023 marked emeritus, so who took over?
- en.wikipedia.org/wiki/Paul_Ewart. He actually fought not to be dismissed by age and won!
- www.physics.ox.ac.uk/our-people/ewart
Ewart is actually religious:This dude is pure trouble for Oxford!
- www.youtube.com/watch?v=aulL-Qa65i0 Paul Ewart, Chance, Science and Spirituality by Faraday Institute for Science and Religion. Oh, he is/was actually chairman of that crap
- www.youtube.com/watch?v=PVX2F4XvGYo Chaos and the Character of God by Prof. Paul Ewart
Undated materials Ewart:
- users.physics.ox.ac.uk/~ewart/index.htm
- users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20lecture%20notes%20C%20port.pdf
- slides: users.physics.ox.ac.uk/~ewart/Atomic%20Physics%20Lecture%20PPT%20slides%201_8.pdf. Also under: www2.physics.ox.ac.uk/sites/default/files/2011-10-19/atomic_physics_lectures_1_8_09_pdf_pdf_18283.pdf. The course was previously B1, they just change the IDs randomly from time to time to fit the B1-7 numbering.
www-thphys.physics.ox.ac.uk/people/AndreiStarinets/sr_mt_2022.html (archive) contains 2022 problem sets and notes, well done Mr Andrei Starinets!
www-pnp.physics.ox.ac.uk/~barra/teaching.shtml As of 2023, contains some good 2015 materials: web.archive.org/web/20220525094139/http://www-pnp.physics.ox.ac.uk/~barra/teaching.shtml It was called "Subatomic physics" back then.
2015 professor: Alan J. Barr.
Possible 2022 professor: Guy Wilkinson (unconfirmed): www.chch.ox.ac.uk/staff/professor-guy-wilkinson
users.ox.ac.uk/~corp0014/B6-lectures.html gives a syllabus:
- Heat capacity in solids, localised harmonic oscillator models (Dulong-Petit law and Einstein model)
- Heat capacity in solids, a model of sound waves (Debye model)
- A gas of classical charged particles (Drude theory)
- A gas of charged fermions (Sommerfeld theory)
- Bonding
- Microscopic theory of vibrations: the 1D monatomic harmonic chain. Mike Glazer's Chainplot program.
- Microscopic theory of vibrations: the 1D diatomic harmonic chain
- Microscopic theory of electrons in solids: the 1D tight-binding chain
- Geometry of solids: crystal structure in real space. VESTA, 3D visualization program for structural models; an example crystal structure database.
- Geometry of solids: real space and reciprocal space. Reciprocal Space teaching and learning package.
- Reciprocal space and scattering. A fun way to discover the world of crystals and their symmetries through diffraction.
- Scattering experiments II
- Scattering experiments III
- Waves in reciprocal space
- Nearly-free electron model
- Band structure and optical properties
- Dynamics of electrons in bands
- Semiconductor devices. Intel's "A History of Innovation"; Moore's Law; From Sand to Circuits.
- Magnetic properties of atoms
- Collective magnetism. A micromagnetic simulation tool, The Object Oriented MicroMagnetic Framework (OOMMF); OOMMF movies of magnetic domains and domain reversal.
- Mean field theory
Problem set dated 2015: users.ox.ac.uk/~corp0014/B6-materials/B6_Problems.pdf Marked by: A. Ardavan and T. Hesjedal. Some more stuff under: users.ox.ac.uk/~corp0014/B6-materials/
The book is the fully commercial The Oxford Solid State Basics.
- web.archive.org/web/20170907092044/http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option it wasn't paywalled in the past up to 2017, but later became. Bastards.
- www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/c3-intro-vacprobs17-41753.pdf gives the 2016 structure:
- Crystal Structure & Dynamics 10 lectures Dr Roger Johnston
- Band Theory 10 lectures Prof Michael Johnston
- Magnetism 7 lectures Prof Radu Coldea
- Optical Properties 6 lectures Prof Laura Herz
- Superconductivity 7 lectures Dr Peter Leek and Dr Amalia Coldea. web.archive.org/web/20170912021658/http://www2.physics.ox.ac.uk/sites/default/files/page/2011/10/04/cmpsc-handout-2017-41006.pdf
A very honest review of my Oxford University master's degree (theoretical physics at keble college) by alicedoesphysics (2020)
Source. Basically all her courses are from the Mathematical Institute of the University of Oxford, and therefore show up at the Moodle of the Oxford Mathematics Institute of Oxford.- qubit.guide/ HTML version od the book.
- github.com/thosgood/qubit.guide. Source code. Written in Bookdown.
- www.arturekert.org/iqis links to the lectures: www.youtube.com/@ArturEkert/playlists Well done in splitting those videos up!
- zhenyucai.com/post/intro_to_qi/
Interesting presentation cycle at Merton BTW: www.arturekert.org/teaching/merton
Oxford Master Course in Mathematical and Theoretical Physics by
Ciro Santilli 37 Updated 2025-07-16
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





