Physical address extension.
With 32 bits, only 4GB RAM can be addressed.
This started becoming a limitation for large servers, so Intel introduced the PAE mechanism to Pentium Pro.
Page table structure is also altered if PAE is on. The exact way in which it is altered depends on weather PSE is on or off.
If either PAE and PSE are active, different paging level schemes are used:
- no PAE and no PSE:
10 | 10 | 12 - no PAE and PSE:
10 | 22.22 is the offset within the 4Mb page, since 22 bits address 4Mb. - PAE and no PSE:
2 | 9 | 9 | 12The design reason why 9 is used twice instead of 10 is that now entries cannot fit anymore into 32 bits, which were all filled up by 20 address bits and 12 meaningful or reserved flag bits.The reason is that 20 bits are not enough anymore to represent the address of page tables: 24 bits are now needed because of the 4 extra wires added to the processor.Therefore, the designers decided to increase entry size to 64 bits, and to make them fit into a single page table it is necessary reduce the number of entries to 2^9 instead of 2^10. - PAE and PSE:
2 | 9 | 21
The Translation Lookahead Buffer (TLB) is a cache for paging addresses.
After a translation between linear and physical address happens, it is stored on the TLB. For example, a 4 entry TLB starts in the following state:
valid linear physical
----- ------ --------
> 0 00000 00000
0 00000 00000
0 00000 00000
0 00000 00000The
> indicates the current entry to be replaced.And after a page linear address and after a second translation of
00003 is translated to a physical address 00005, the TLB becomes: valid linear physical
----- ------ --------
1 00003 00005
> 0 00000 00000
0 00000 00000
0 00000 0000000007 to 00009 it becomes: valid linear physical
----- ------ --------
1 00003 00005
1 00007 00009
> 0 00000 00000
0 00000 00000When TLB is filled up, older addresses are overwritten. Just like CPU cache, the replacement policy is a potentially complex operation, but a simple and reasonable heuristic is to remove the least recently used entry (LRU).
With LRU, starting from state:adding
valid linear physical
----- ------ --------
> 1 00003 00005
1 00007 00009
1 00009 00001
1 0000B 000030000D -> 0000A would give: valid linear physical
----- ------ --------
1 0000D 0000A
> 1 00007 00009
1 00009 00001
1 0000B 00003Using the TLB makes translation faster, because the initial translation takes one access per TLB level, which means 2 on a simple 32 bit scheme, but 3 or 4 on 64 bit architectures.
The TLB is usually implemented as an expensive type of RAM called content-addressable memory (CAM). CAM implements an associative map on hardware, that is, a structure that given a key (linear address), retrieves a value.
Mappings could also be implemented on RAM addresses, but CAM mappings may required much less entries than a RAM mapping.
linear physical
------ --------
00000 00001
00001 00010
00010 00011
FFFFF 00000The Linux kernel makes extensive usage of the paging features of x86 to allow fast process switches with small data fragmentation.
There are also however some features that the Linux kernel might not use, either because they are only for backwards compatibility, or because the Linux devs didn't feel it was worth it yet.
Convert virtual addresses to physical from user space with
/proc/<pid>/pagemap and from kernel space with virt_to_phys:Dump all page tables from userspace with
/proc/<pid>/maps and /proc/<pid>/pagemap:Read and write physical addresses from userspace with
/dev/mem:The Linux Kernel reserves two zones of virtual memory:
- one for kernel memory
- one for programs
The exact split is configured by
CONFIG_VMSPLIT_.... By default:- on 32-bit:
- on 64-bit: currently only 48-bits are actually used, split into two equally sized disjoint spaces. The Linux kernel just assigns:
- the bottom part to processes
00000000 00000000to008FFFFF FFFFFFFF - the top part to the kernel:
FFFF8000 00000000toFFFFFFFF FFFFFFFF, like this:------------------ FFFFFFFF Kernel ------------------ C0000000 (not addressable) ------------------ BFFFFFFF Process ------------------ 00000000
- the bottom part to processes
Kernel memory is also paged.
In previous versions, the paging was continuous, but with HIGHMEM this changed.
There is no clear physical memory split: stackoverflow.com/questions/30471742/physical-memory-userspace-kernel-split-on-linux-x86-64
Those page faults only happen when a process tries to write to the page, and not read from it.
When Linux forks a process:
- instead of copying all the pages, which is unnecessarily costly, it makes the page tables of the two process point to the same physical address.
- it marks those linear addresses as read-only
- whenever one of the processes tries to write to a page, the makes a copy of the physical memory, and updates the pages of the two process to point to the two different physical addresses
In
v4.2, look under arch/x86/:include/asm/pgtable*include/asm/page*mm/pgtable*mm/page*
There seems to be no structs defined to represent the pages, only macros:
include/asm/page_types.h is specially interesting. Excerpt:#define _PAGE_BIT_PRESENT 0 /* is present */
#define _PAGE_BIT_RW 1 /* writeable */
#define _PAGE_BIT_USER 2 /* userspace addressable */
#define _PAGE_BIT_PWT 3 /* page write through */Paging is done by the Memory Management Unit (MMU) part of the CPU.
It was later integrated into the CPU, but the term MMU still used.
Two level address translation to make OS emulation more efficient.
Peter Cordes mentions that some architectures like MIPS leave paging almost completely in the hands of software: a TLB miss runs an OS-supplied function to walk the page tables, and insert the new mapping into the TLB. In such architectures, the OS can use whatever data structure it wants.
Free:
- rutgers-pxk-416 chapter "Memory management: lecture notes"
Intel is known to have created customized chips for very large clients.
This is mentioned e.g. at: www.theregister.com/2021/03/23/google_to_build_server_socs/Those chips are then used only in large scale server deployments of those very large clients. Google is one of them most likely, given their penchant for Google custom hardware.
Intel is known to do custom-ish cuts of Xeons for big customers.
TODO better sources.
esolangs.org/wiki/Y86 mentions:
One specification at: web.cse.ohio-state.edu/~reeves.92/CSE2421sp13/PracticeProblemsY86.pdf
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





