QuTech by Ciro Santilli 35 Updated +Created
Organization developing quantum hardware by Ciro Santilli 35 Updated +Created
Quantum computing paradigm by Ciro Santilli 35 Updated +Created
Readout (quantum computing) by Ciro Santilli 35 Updated +Created
These are two conflicting constraints:
Quantum logic gate by Ciro Santilli 35 Updated +Created
At Section "Quantum computing is just matrix multiplication" we saw that making a quantum circuit actually comes down to designing one big unitary matrix.
We have to say though that that was a bit of a lie.
Quantum programmers normally don't just produce those big matrices manually from scratch.
Instead, they use quantum logic gates.
Clifford plus T by Ciro Santilli 35 Updated +Created
Set of quantum logic gate composed of the Clifford gates plus the Toffoli gate. It forms a set of universal quantum gates.
Quantum computer physical implementation by Ciro Santilli 35 Updated +Created
Video 1.
How To Build A Quantum Computer by Lukas's Lab (2023)
Source.
Super quick overview of the main types of quantum computer physical implementations, so doesn't any much to a quick Google.
He says he's going to make a series about it, so then something useful might actually come out. The first one was: Video "How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)", but it is still too basic.
The author's full name is Lukas Baker, www.linkedin.com/in/lukasbaker1331/, found with Google reverse image search, even though the LinkedIn image is very slightly different from the YouTube one.
As of 2023 he was a PhD student at NYU.
N-V center quantum computer by Ciro Santilli 35 Updated +Created
Electron on helium quantum computer by Ciro Santilli 35 Updated +Created
EeroQ by Ciro Santilli 35 Updated +Created
Superconducting quantum computer need non-linear components by Ciro Santilli 35 Updated +Created
Non-linearity is needed otherwise the input energy would just make the state go to higher and higher energy levels, e.g. from 1 to 2. But we only want to use levels 0 and 1.
The way this is modelled in by starting from a pure LC circuit, which is an harmonic oscillator, see also quantum LC circuit, and then replacing the linear inductor with a SQUID device, e.g. mentioned at: youtu.be/eZJjQGu85Ps?t=1655 Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)".
Superconducting qubits are bad because of fabrication variation by Ciro Santilli 35 Updated +Created
Atom-based qubits like trapped ion quantum computers have parameters fixed by the laws of physics.
However superconducting qubits have a limit on how precise their parameters can be set based on how well we can fabricate devices. This may require per-device characterisation.
Transmon by Ciro Santilli 35 Updated +Created
Used e.g. in the Sycamore processor.
The most basic type of transmon is in Ciro's ASCII art circuit diagram notation, an LC circuit e.g. as mentioned at youtu.be/cb_f9KpYipk?t=180 from Video "The transmon qubit by Leo Di Carlo (2018)":
+----------+
| Island 1 |
+----------+
   |   |
   X   C
   |   |
+----------+
| Island 2 |
+----------+
youtu.be/eZJjQGu85Ps?t=2443 from Video "Superconducting Qubits I Part 1 by Zlatko Minev (2020)" describes a (possibly simplified) physical model of it, as two superconducting metal islands linked up by a Josephson junction marked as X in the diagram as per-Ciro's ASCII art circuit diagram notation:
+-------+       +-------+
|       |       |       |
| Q_1() |---X---| Q_2() |
|       |       |       |
+-------+       +-------+
The circuit is then analogous to a LC circuit, with the islands being the capacitor. The Josephson junction functions as a non-linear inductor.
Others define it with a SQUID device instead: youtu.be/cb_f9KpYipk?t=328 from Video "The transmon qubit by Leo Di Carlo (2018)". He mentions that this allows tuning the inductive element without creating a new device.
Video 1.
The superconducting transmon qubit as a microwave resonator by Daniel Sank (2021)
Source.
Video 2.
Calibration of Transmon Superconducting Qubits by Stefan Titus (2021)
Source. Possibly this Keysight which would make sense.
Rabi cycle by Ciro Santilli 35 Updated +Created
India by Ciro Santilli 35 Updated +Created
Topological quantum computer by Ciro Santilli 35 Updated +Created
Video 1.
Topological Quantum Computer by Professor John Preskill
. Source.
Video 2.
Topological Quantum Computation by Jason Alicea (2021)
Source.
Video 3.
Anyons by Yuly Billig (2022)
Source.
Trapped ion quantum computer by Ciro Santilli 35 Updated +Created
TODO understand.
Video 1.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source.
A basic introduction, but very concrete, with only a bit of math it might be amazing:
Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
A major flaw of this presentation is not explaining the readout process.
Video 2.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.
Video 3.
Ion trapping and quantum gates by Wolfgang Ketterle (2013)
Source.
Video 4.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.
IonQ by Ciro Santilli 35 Updated +Created
Video 1.
Quantum Simulation and Computation with Trapped Ions by Christopher Monroe (2021)
Source.
Video 2.
Quantum Computing with Trapped Ions by Christopher Monroe (2018)
Source. Co-founder of IonQ. Cool dude. Starts with basic background we already know now. Mentions that there is some relationship between atomic clocks and trapped ion quantum computers, which is interesting. Then he goes into turbo mode, and you get lost unless you're an expert! Video 1. "Quantum Simulation and Computation with Trapped Ions by Christopher Monroe (2021)" is perhaps a better watch.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact