Isomer by Ciro Santilli 37 Updated 2025-07-16
Isomers were quite confusing for early chemists, before atomic theory was widely accepted, and people where thinking mostly in terms of proportions of equations, related: Section "Isomers suggest that atoms exist".
Stereochemistry by Ciro Santilli 37 Updated 2025-07-16
Molecules that are the same if you just look at "what atom is linked to what atom", they are only different if you consider the relative spacial positions of atoms.
Uncertainty principle by Ciro Santilli 37 Updated 2025-07-16
The wave equation contains the entire state of a particle.
And a single vector can be represented in many different ways in different basis, and two of those ways happen to be the position and the momentum representations.
More importantly, position and momentum are first and foremost operators associated with observables: the position operator and the momentum operator. And both of their eigenvalue sets form a basis of the Hilbert space according to the spectral theorem.
When you represent a wave equation as a function, you have to say what the variable of the function means. And depending on weather you say "it means position" or "it means momentum", the position and momentum operators will be written differently.
Furthermore, the position and momentum representations are equivalent: one is the Fourier transform of the other: position and momentum space. Remember that notably we can always take the Fourier transform of a function in due to Carleson's theorem.
In precise terms, the uncertainty principle talks about the standard deviation of two measures.
We can visualize the uncertainty principle more intuitively by thinking of a wave function that is a real flat top bump function with a flat top in 1D. We can then change the width of the support, but when we do that, the top goes higher to keep probability equal to 1. The momentum is 0 everywhere, except in the edges of the support. Then:
Position operator by Ciro Santilli 37 Updated 2025-07-16
This operator case is surprisingly not necessarily mathematically trivial to describe formally because you often end up getting into the Dirac delta functions/continuous spectrum: as mentioned at: mathematical formulation of quantum mechanics
Basically the operators are just analogous to the classical ones e.g. the classical:
becomes:
Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact