Discovery of:
- the positron by Carl David Anderson
- he cosmic rays by Victor Francis Hess
Bond cleavage refers to the breaking of chemical bonds between atoms in a molecule. This process is crucial in many chemical reactions, including those involved in organic synthesis, biochemistry, and various industrial processes. Bond cleavage can occur in several ways, primarily categorized as either homolytic or heterolytic cleavage: 1. **Homolytic Cleavage**: In this type of cleavage, the bond breaks symmetrically, resulting in the formation of two radical species.
Early electron diffraction experiment from 1927 that drastically confirmed the matter wave hypothesis.
The Bond Valence Method (BVM) is a semi-empirical approach used in solid-state chemistry and crystallography to analyze and predict the bonding characteristics of atoms in a crystal or molecular structure. It is particularly useful for understanding the distribution and strengths of bonds in complex materials, such as minerals and coordination compounds.
Inverted ligand field theory (ILFT) is a theoretical framework used to understand the electronic structure and behavior of transition metal complexes, particularly in the context of their crystal field environments. It is a modification of traditional ligand field theory (LFT), which focuses on the effects of the surrounding ligands on the energy levels of metal d-orbitals.
A carbon-carbon (C-C) bond is a chemical bond between two carbon atoms. These bonds can be found in various types of organic molecules and are fundamental to the structure of many compounds. There are three main types of carbon-carbon bonds: 1. **Single bonds (C-C)**: This is formed when two carbon atoms share one pair of electrons. This is the most common bond in organic compounds, such as in alkanes.
Thérèse Delpech was a prominent French intellectual and expert in international relations, particularly known for her work on nuclear policy and disarmament. Born in 1948 and passing away in 2012, she had a significant influence on discussions around French and global security issues. Delpech served as a director at the French Institute of International Relations (IFRI) and contributed to various scholarly publications on topics related to strategic studies and geopolitics.
The carbon-fluorine (C-F) bond is a chemical bond between carbon and fluorine atoms. It is characterized by several important features: 1. **Polarity**: The C-F bond is highly polar due to the significant difference in electronegativity between carbon (2.5) and fluorine (3.98). This polarity means that the bond has a partial negative charge on the fluorine atom and a partial positive charge on the carbon atom.
A charge-shift bond is a type of chemical bond that involves a transient shift of electron density between two atoms or groups, typically in a covalent bonding scenario. Unlike traditional covalent bonds, where electron sharing is more stable and constant, charge-shift bonds exhibit a dynamic feature where the electronic charge fluctuates between the bonding partners. This can occur due to external influences, such as electrical fields, changes in temperature, or the presence of reactive species.
Local symmetries appear to be a synonym to internal symmetry, see description at: Section "Internal and spacetime symmetries".
A local symmetry is a transformation that you apply a different transformation for each point, instead of a single transformation for every point.
Bibliography:
- lecture 3
- physics.stackexchange.com/questions/48188/local-and-global-symmetries
- www.physics.rutgers.edu/grad/618/lects/localsym.pdf by Joel Shapiro gives one nice high level intuitive idea:
- Quora:
A carbon–hydrogen (C–H) bond is a covalent bond between a carbon atom and a hydrogen atom. This bond is fundamental in organic chemistry, as it is a key component of many organic molecules. ### Characteristics of C–H Bonds: 1. **Bonding**: The bond forms when carbon, which has four valence electrons, shares one of its electrons with hydrogen, which has one valence electron.
A carbon-nitrogen bond is a type of chemical bond that occurs between carbon (C) and nitrogen (N) atoms. This bond can be found in various organic and inorganic compounds, typically in the form of a single bond, double bond, or even triple bond, depending on the specific structure and context of the compound. **Characteristics of Carbon-Nitrogen Bonds:** 1.
A carbon–oxygen bond is a chemical bond between a carbon atom and an oxygen atom. This type of bond is fundamental in organic chemistry and biochemistry, as both carbon and oxygen are key elements in many biological molecules and organic compounds. There are two primary types of carbon–oxygen bonds: 1. **Single Bond (C–O)**: In this bond, one pair of electrons is shared between the carbon atom and the oxygen atom. This type of bond is seen in alcohols (e.
Cation–π interaction is a type of non-covalent interaction that occurs between a positively charged ion (cation) and the electron-rich π system of an aromatic ring or other π-conjugated systems. This interaction is significant in various fields, including chemistry, biochemistry, and molecular biology, as it plays a role in stabilizing molecular structures and contributing to the specificity of molecular recognition processes.
Cyclodipeptide synthases (CDPSs) are enzymes that catalyze the formation of cyclodipeptides, which are cyclic dipeptides. These compounds consist of two amino acids linked by a peptide bond, forming a cyclic structure. Cyclodipeptides can exhibit a variety of biological activities, including antimicrobial, antifungal, and anticancer properties, and are of interest for their potential pharmaceutical applications.
D-block contraction refers to a phenomenon observed in the periodic table, particularly in the transition metals, where the d-orbitals are involved in bonding and chemical behavior. More specifically, it often describes the decrease in the size of the atoms of transition metals as you move from left to right across a period, despite an increase in the number of protons in the nucleus. This contraction is primarily due to the poor shielding effect of the d-electrons.
A lone pair refers to a pair of valence electrons that are not shared with another atom and remain localized on a single atom. These electrons are often found in the outermost shell of an atom and can influence the atom's chemical behavior, including bond angles and molecular geometry. Lone pairs are important in the formation of molecular shapes, as they can repel other electron pairs (both bonding and lone pairs) according to the principles of VSEPR (Valence Shell Electron Pair Repulsion) theory.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact