Quantum algorithm by Ciro Santilli 35 Updated +Created
This is the true key question: what are the most important algorithms that would be accelerated by quantum computing?
Some candidates:
Do you have proper optimization or quantum chemistry algorithms that will make trillions?
Maybe there is some room for doubt because some applications might be way better in some implementations, but we should at least have a good general idea.
However, clear information on this really hard to come by, not sure why.
Explicit scalar form of the Maxwell's equations by Ciro Santilli 35 Updated +Created
For numerical algorithms and to get a more low level understanding of the equations, we can expand all terms to the simpler and more explicit form:
Caesium standard by Ciro Santilli 35 Updated +Created
Uses the frequency of the hyperfine structure of caesium-133 ground state, i.e spin up vs spin down of its valence electron , to define the second.
International System of Units definition of the second since 1967, because this is what atomic clocks use.
TODO why does this have more energy than the hyperfine split of the hydrogen line given that it is further from the nucleus?
Quartz clock by Ciro Santilli 35 Updated +Created
Video 1.
How a quartz watch works by Steve Mould (2017)
Source. Mentions feedback loop loop with the quartz tuning fork for the piezoelectricity and an amplifier. Also mentions the choice of 32768 Hertz () as the first power of 2 that is outside of the human hearing range, and then how a frequency divider is used to reduce the frequency to get the second counter.
Physics by Ciro Santilli 35 Updated +Created
Physics (like all well done science) is the art of predicting the future by modelling the world with mathematics.
And predicting the future is the first step towards controlling it, i.e.: engineering.
Ciro Santilli doesn't know physics. He writes about it partly to start playing with some scientific content for: OurBigBook.com, partly because this stuff is just amazingly beautiful.
Ciro's main intellectual physics fetishes are to learn quantum electrodynamics (understanding the point of Lie groups being a subpart of that) and condensed matter physics.
Every science is Physics in disguise, but the number of objects in the real world is so large that we can't solve the real equations in practice.
Luckily, due to emergence, we can use uglier higher level approximations of the world to solve many problems, with the complex limits of applicability of those approximations.
Therefore, such higher level approximations are highly specialized, and given different names such as:
As of 2019, all known physics can be described by two theories:
Unifying those two into the theory of everything one of the major goals of modern physics.
Figure 1.
xkcd 435: Fields arranged by purity
. Source. Reductionism comes to mind.
Figure 2.
Physically accurate genie by Psychomic
. Source. This sane square composition from: www.reddit.com/r/funny/comments/u08dw3/nice_guy_genie/.
Natural science by Ciro Santilli 35 Updated +Created
Ciro Santilli often wonders to himself, how much of the natural sciences can one learn in a lifetime? Certainly, a very strong basis, with concrete experimental and physics, chemistry and biology should be attainable to all? How much Ciro manages to learning and teach in those areas is a kind of success metric of Ciro's life.
Bandpass filter by Ciro Santilli 35 Updated +Created
Paper without code by Ciro Santilli 35 Updated +Created
Low-density parity-check code by Ciro Santilli 35 Updated +Created
4G by Ciro Santilli 35 Updated +Created
Cellular network by Ciro Santilli 35 Updated +Created
Radio receiver by Ciro Santilli 35 Updated +Created
As well put by Wikipedia, a radio receiver has to perform three functions on the signal from the antenna:
  • filtering, so you can tune the station you care about. This filters based on the frequency of the carrier wave you want. I.e. you use a bandpass filter.
  • amplification: otherwise you won't be able to hear anything if the emitter is too far away
  • demodulation: this means decoding the signal based on whatever way it was encoded, notably e.g. AM/FM
Dipole antenna by Ciro Santilli 35 Updated +Created
Video 1.
Radio Wave Properties: Electric and Magnetic Dipole Antennae by Harvard Natural Sciences Lecture Demonstrations (2020)
Source. The dude lights bulbs on an antenna made of a single piece of copper, powered with EM radiation. Amazing.
Radio transmitter and receiver by Ciro Santilli 35 Updated +Created
Why can't you send voice without modulation? by Ciro Santilli 35 Updated +Created
Basically, the antenna has to be very, very large, more comparable to wavelength. E.g. even for the higher pitches, we fall in very low frequency, so have a look at the size of some of the submarine VLF antennas! They are like football pitch sized.
Fax by Ciro Santilli 35 Updated +Created
Uses telephone lines, and therefore were still usable much much after the Internet made them obsolete, which is quite funny.
Video 1.
Teletype ASR 33 Part 10: ASR 33 demo by CuriousMarc (2020)
Source.
Video 2.
Fax Machine by Museum of Obsolte Objects (2011)
Source.
Hyperbolic sine by Ciro Santilli 35 Updated +Created
Telephone by Ciro Santilli 35 Updated +Created
We are at a point in history where the electrical telegraph is well established.
But people don't want to press letters one by one on a switch. They want to talk!
The first phones appear to have used telegraph lines directly.
Also wired phones don't require modulation, which likely made their development much easier than wireless voice transmission. You just send the signal as a voltage differential directly obtained from the air pressure: how the telephone works.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact