PsiQuantum by Ciro Santilli 40 Updated 2025-07-16
Good talk by CEO before starting the company which gives insight on what they are very likely doing: Video "Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)"
PsiQuantum appears to be particularly secretive, even more than other startups in the field.
They want to reuse classical semiconductor fabrication technologies, notably they have close ties to GlobalFoundries.
So he went to the US and raised N times more from the American military-industrial complex.
Once upon a time, the British Government decided to invest some 80 million into quantum computing.
Jeremy O'Brien told his peers that he had the best tech, and that he should get it all.
Some well connected peers from well known universities did not agree however, and also bid for the money, and won.
Jeremy was defeated. And pissed.
So he moved to Palo Alto and raised a total of $665 million instead as of 2021. The end.
Makes for a reasonable the old man lost his horse.
www.ft.com/content/afc27836-9383-11e9-aea1-2b1d33ac3271 British quantum computing experts leave for Silicon Valley talks a little bit about them leaving, but nothing too juicy. They were called PsiQ previously apparently.
The departure of some of the UK’s leading experts in a potentially revolutionary new field of technology will raise fresh concerns over the country’s ability to develop industrial champions in the sector.
More interestingly, the article mentions that this was party advised by early investor Hermann Hauser, who is known to be preoccupied about UK's ability to create companies. Of course, European Tower of Babel.
Ubuntu feature request by Ciro Santilli 40 Updated 2025-07-16
Sometimes it just feels like Ubuntu devs don't actually use Ubuntu as a desktop.
Some extremely annoying problems are introduced and just never get fixed, even though they feel so obvious!
Would never happen on Mac...
Bibliography:
Qiskit by Ciro Santilli 40 Updated 2025-07-16
Python library, claims multiple backends, including simulation and real IBM quantum computer.
qiskit/hello.py by Ciro Santilli 40 Updated 2025-07-16
Our example uses a Bell state circuit to illustrate all the fundamental Qiskit basics.
Sample program output, counts are randomized each time.
First we take the quantum state vector immediately after the input.
input:
state:
Statevector([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
            dims=(2, 2))
probs:
[1. 0. 0. 0.]
We understand that the first element of Statevector is , and has probability of 1.0.
Next we take the state after a Hadamard gate on the first qubit:
h:
state:
Statevector([0.70710678+0.j, 0.70710678+0.j, 0.        +0.j,
             0.        +0.j],
            dims=(2, 2))
probs:
[0.5 0.5 0.  0. ]
We now understand that the second element of the Statevector is , and now we have a 50/50 propabability split for the first bit.
Then we apply the CNOT gate:
cx:
state:
Statevector([0.70710678+0.j, 0.        +0.j, 0.        +0.j,
             0.70710678+0.j],
            dims=(2, 2))
probs:
[0.5 0.  0.  0.5]
which leaves us with the final .
Then we print the circuit a bit:
qc without measure:
     ┌───┐
q_0: ┤ H ├──■──
     └───┘┌─┴─┐
q_1: ─────┤ X ├
          └───┘
c: 2/══════════

qc with measure:
     ┌───┐     ┌─┐
q_0: ┤ H ├──■──┤M├───
     └───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
          └───┘ ║ └╥┘
c: 2/═══════════╩══╩═
                0  1
qasm:
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];
And finally we compile the circuit and do some sample measurements:
qct:
     ┌───┐     ┌─┐
q_0: ┤ H ├──■──┤M├───
     └───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
          └───┘ ║ └╥┘
c: 2/═══════════╩══╩═
                0  1
counts={'11': 484, '00': 516}
counts={'11': 493, '00': 507}
qiskit/initialize.py by Ciro Santilli 40 Updated 2025-07-16
In this example we will initialize a quantum circuit with a single CNOT gate and see the output values.
By default, Qiskit initializes every qubit to 0 as shown in the qiskit/hello.py. But we can also initialize to arbitrary values as would be done when computing the output for various different inputs.
Output:
     ┌──────────────────────┐
q_0: ┤0                     ├──■──
     │  Initialize(1,0,0,0) │┌─┴─┐
q_1: ┤1                     ├┤ X ├
     └──────────────────────┘└───┘
c: 2/═════════════════════════════

init: [1, 0, 0, 0]
probs: [1. 0. 0. 0.]

init: [0, 1, 0, 0]
probs: [0. 0. 0. 1.]

init: [0, 0, 1, 0]
probs: [0. 0. 1. 0.]

init: [0, 0, 0, 1]
probs: [0. 1. 0. 0.]

     ┌──────────────────────────────────┐
q_0: ┤0                                 ├──■──
     │  Initialize(0.70711,0,0,0.70711) │┌─┴─┐
q_1: ┤1                                 ├┤ X ├
     └──────────────────────────────────┘└───┘
c: 2/═════════════════════════════════════════

init: [0.7071067811865475, 0, 0, 0.7071067811865475]
probs: [0.5 0.5 0.  0. ]
which we should all be able to understand intuitively given our understanding of the CNOT gate and quantum state vectors.
quantumcomputing.stackexchange.com/questions/13202/qiskit-initializing-n-qubits-with-binary-values-0s-and-1s describes how to initialize circuits qubits only with binary 0 or 1 to avoid dealing with the exponential number of elements of the quantum state vector.
qiskit/qft.py by Ciro Santilli 40 Updated 2025-07-16
This is an example of the qiskit.circuit.library.QFT implementation of the Quantum Fourier transform function which is documented at: docs.quantum.ibm.com/api/qiskit/0.44/qiskit.circuit.library.QFT
Output:
init: [1, 0, 0, 0, 0, 0, 0, 0]
qc
     ┌──────────────────────────────┐┌──────┐
q_0: ┤0                             ├┤0     ├
     │                              ││      │
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├┤1 QFT ├
     │                              ││      │
q_2: ┤2                             ├┤2     ├
     └──────────────────────────────┘└──────┘
transpiled qc
     ┌──────────────────────────────┐                                     ┌───┐   
q_0: ┤0                             ├────────────────────■────────■───────┤ H ├─X─
     │                              │              ┌───┐ │        │P(π/2) └───┘ │ 
q_1: ┤1 Initialize(1,0,0,0,0,0,0,0) ├──────■───────┤ H ├─┼────────■─────────────┼─
     │                              │┌───┐ │P(π/2) └───┘ │P(π/4)                │ 
q_2: ┤2                             ├┤ H ├─■─────────────■──────────────────────X─
     └──────────────────────────────┘└───┘
Statevector([0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
             0.35355339+0.j, 0.35355339+0.j, 0.35355339+0.j,
             0.35355339+0.j, 0.35355339+0.j],
            dims=(2, 2, 2))

init: [0.0, 0.35355339059327373, 0.5, 0.3535533905932738, 6.123233995736766e-17, -0.35355339059327373, -0.5, -0.35355339059327384]
Statevector([ 7.71600526e-17+5.22650714e-17j,
              1.86749130e-16+7.07106781e-01j,
             -6.10667421e-18+6.10667421e-18j,
              1.13711443e-16-1.11022302e-16j,
              2.16489014e-17-8.96726857e-18j,
             -5.68557215e-17-1.11022302e-16j,
             -6.10667421e-18-4.94044770e-17j,
             -3.30200457e-16-7.07106781e-01j],
            dims=(2, 2, 2))
So this also serves as a more interesting example of quantum compilation, mapping the QFT gate to Qiskit Aer primitives.
If we don't transpile in this example, then running blows up with:
qiskit_aer.aererror.AerError: 'unknown instruction: QFT'
The second input is:
and the output of that approximately:
[0, 1j/sqrt(2), 0, 0, 0, 0, 0, 1j/sqrt(2)]
which can be defined simply as the normalized DFT of the input quantum state vector.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact