A Markov number is a specific type of positive integer that is associated with a particular solution to Markov's equation, which is given by: \[ x^2 + y^2 + z^2 = 3xyz \] where \( x \), \( y \), and \( z \) are positive integers. A set of numbers \( (x, y, z) \) that satisfies this equation is called a Markov triple.
Pell's equation is a specific type of Diophantine equation, which is an equation that seeks integer solutions. It is typically expressed in the form: \[ x^2 - Dy^2 = 1 \] Here, \( x \) and \( y \) are integers, and \( D \) is a positive integer that is not a perfect square. The main objective is to find integer pairs \((x, y)\) that satisfy this equation.
A **primitive Pythagorean triple** consists of three positive integers \( (a, b, c) \) that satisfy the equation \( a^2 + b^2 = c^2 \) and have a greatest common divisor (gcd) of 1, meaning they are coprime.
The Sum of Four Cubes Problem refers to the mathematical question of whether every integer can be expressed as the sum of four integer cubes.
Illés Relief is a type of relief sculpture characterized by its intricate details and craftsmanship. It refers to a specific artwork that depicts the biblical prophet Elijah (Illés in Hungarian) in a dramatic context, including scenes from his life and miracles. The relief captures the essence of the narrative and emotions associated with the prophet, often showcasing his encounters with nature and divine intervention.
The Museum of the Gorge is a local museum located in Ironbridge, Shropshire, England. It is part of the Ironbridge Gorge World Heritage Site, which is known for its historical significance in the development of the iron and coal industries during the Industrial Revolution. The museum is dedicated to showcasing the history and heritage of the Ironbridge Gorge area, particularly its industrial past.
The "Nutshell Studies of Unexplained Death" is a collection of dioramas created by Frances Glessner Lee in the 1940s. Glessner Lee was a pioneer in forensic science who aimed to improve the training of homicide investigators. The dioramas are incredibly detailed miniature scenes that depict various murder mysteries and unexplained deaths. Each diorama is designed to present a different set of circumstances surrounding a fictional death, complete with realistic props and meticulous attention to detail.
Digital geometry is a field of study that deals with geometric objects and their representations in digital form, particularly in the context of computer graphics, image processing, and computer vision. It involves the mathematical analysis of shapes and structures that are represented as discrete pixels or voxels (in three dimensions) rather than continuous forms.
Arrangement in the context of space partitioning refers to the way in which a geometric space is divided or partitioned based on a set of geometric objects, such as points, lines, or polygons. This partitioning can create distinct regions or cells within the space that can be analyzed or manipulated separately.
Carpenter's rule problem, often related to measuring and cutting materials in carpentry, involves practical challenges faced by carpenters when attempting to measure lengths accurately with a ruler that may have limited precision. One of the more classical interpretations of the Carpenter's rule problem involves determining how to cut a longer piece of wood into shorter lengths using only a limited-length ruler.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact