Year 3 of the mathematics course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
Year 2 of the mathematics course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
Year 1 of the mathematics course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
List of handbooks open as of 2022 at: www.maths.ox.ac.uk/members/students/undergraduate-courses/teaching-and-learning/handbooks-synopses Kudos, e.g. unlike the physics course of the University of Oxford which paywalled them. 2022 one: www.maths.ox.ac.uk/system/files/attachments/UG%20Handbook%202022.pdf
The Oxford mathematics Moodle has detailed course listings, and most PDFs are not paywalled.
E.g. the 2024 course:
- Year 1: everything seems mandatory:
- Michaelmas Term
- Introduction to University Mathematics
- Introduction to Complex Numbers
- Linear Algebra I
- Analysis I
- Introductory Calculus
- Probability
- Geometry
- Hilary Term
- Trinity Term
- Groups and Group Actions
- Analysis III
- Statistics and Data Analysis
- Constructive Mathematics
- Michaelmas Term
- Year 2:
- Mandatory big courses:
- long options:
- Rings and Modules
- Integration
- Topology
- Differential Equations 2
- Numerical Analysis
- Probability
- Statistics
- Fluids and Waves
- Quantum Theory
- short options
- Number Theory
- Group Theory
- Projective Geometry
- Integral Transforms
- Calculus of Variations
- Graph Theory
- Mathematical Modelling in Biology
- Year 3: pick any 8 courses. Does not say which courses exist in PDF but we can get them from courses.maths.ox.ac.uk/course/index.php?categoryid=814 of the Oxford mathematics Moodle:
- Michaelmas
- B1.1 Logic (2024-25)
- B2.1 Introduction to Representation Theory (2024-25)
- B3.2 Geometry of Surfaces (2024-25)
- B3.5 Topology and Groups (2024-25)
- B4.1 Functional Analysis I (2024-25)
- B5.2 Applied Partial Differential Equations (2024-25)
- B5.3 Viscous Flow (2024-25)
- B5.5 Further Mathematical Biology (2024-25)
- B6.1 Numerical Solution of Partial Differential Equations (2024-25)
- B6.3 Integer Programming (2024-25)
- B7.1 Classical Mechanics (2024-25)
- B8.1 Probability, Measure and Martingales (2024-25)
- B8.4 Information Theory (2024-25)
- B8.5 Graph Theory (2024-25)
- BO1.1 History of Mathematics (2024-25)
- BOE Other Mathematical Extended Essay (2024-25)
- BSP Structured Projects (2024-25)
- Hilary
- B1.2 Set Theory (2024-25)
- B2.2 Commutative Algebra (2024-25)
- B2.3 Lie Algebras (2024-25)
- B3.1 Galois Theory (2024-25)
- B3.3 Algebraic Curves (2024-25)
- B3.4 Algebraic Number Theory (2024-25)
- B4.3 Distribution Theory (2024-25)
- B4.2 Functional Analysis II (2024-25)
- B5.1 Stochastic Modelling of Biological Processes (2024-25)
- B5.4 Waves and Compressible Flow (2024-25)
- B5.6 Nonlinear Dynamics, Bifurcations and Chaos (2024-25)
- B6.2 Optimisation for Data Science (2024-25)
- B7.2 Electromagnetism (2024-25)
- B7.3 Further Quantum Theory (2024-25)
- B8.2 Continuous Martingales and Stochastic Calculus (2024-25)
- B8.3 Mathematical Models of Financial Derivatives (2024-25)
- B8.6 High Dimensional Probability (2024-25)
- SB3.1 Applied Probability (2024-25)
- BO1.1 History of Mathematics (2024-25)
- BOE Other Mathematical Extended Essay (2024-25)
- BSP Structured Projects (2024-25)
- Michaelmas
- Year 4: pick any 8 courses (up to 10 if you're crazy). Does not say which courses exist in PDF but we can get them from courses.maths.ox.ac.uk/course/index.php?categoryid=814 of the Oxford mathematics Moodle:
- Michaelmas
- C1.1 Model Theory (2024-25)
- C1.4 Axiomatic Set Theory (2024-25)
- C2.2 Homological Algebra (2024-25)
- C2.4 Infinite Groups (2024-25)
- C2.7 Category Theory (2024-25)
- C3.1 Algebraic Topology (2024-25)
- C3.3 Differentiable Manifolds (2024-25)
- C3.4 Algebraic Geometry (2024-25)
- C3.7 Elliptic Curves (2024-25)
- C3.8 Analytic Number Theory (2024-25)
- C4.1 Further Functional Analysis (2024-25)
- C4.3 Functional Analytic Methods for PDEs (2024-25)
- C5.2 Elasticity and Plasticity (2024-25)
- C5.5 Perturbation Methods (2024-25)
- C5.7 Topics in Fluid Mechanics (2024-25)
- C5.11 Mathematical Geoscience (2024-25)
- C5.12 Mathematical Physiology (2024-25)
- C6.1 Numerical Linear Algebra (2024-25)
- C6.5 Theories of Deep Learning (2024-25)
- C7.1 Theoretical Physics (C6) (2024-25)
- C7.5 General Relativity I (2024-25)
- C8.1 Stochastic Differential Equations (2024-25)
- C8.3 Combinatorics (2024-25)
- CCD Dissertations on a Mathematical Topic (2024-25)
- COD Dissertations on the History of Mathematics (2024-25)
- Hilary
- C1.2 Gödel's Incompleteness Theorems (2024-25)
- C1.3 Analytic Topology (2024-25)
- C2.3 Representation Theory of Semisimple Lie Algebras (2024-25)
- C2.5 Non-Commutative Rings (2024-25)
- C2.6 Introduction to Schemes (2024-25)
- C3.2 Geometric Group Theory (2024-25)
- C3.5 Lie Groups (2024-25)
- C3.6 Modular Forms (2024-25)
- C3.9 Computational Algebraic Topology (2024-25)
- C3.10 Additive Combinatorics (2024-25)
- C3.11 Riemannian Geometry (2024-25)
- C3.12 Low-Dimensional Topology and Knot Theory (2024-25)
- C4.6 Fixed Point Methods for Nonlinear PDEs (2024-25)
- C4.9 Optimal Transport & Partial Differential Equations (2024-25)
- C5.1 Solid Mechanics (2024-25)
- C5.4 Networks (2024-25)
- C5.6 Applied Complex Variables (2024-25)
- C6.2 Continuous Optimisation (2024-25)
- C6.4 Finite Element Method for PDEs (2024-25)
- C7.1 Theoretical Physics (C6) (2024-25)
- C7.4 Introduction to Quantum Information (2024-25)
- C7.6 General Relativity II (2024-25)
- C7.7 Random Matrix Theory (2024-25)
- C8.2 Stochastic Analysis and PDEs (2024-25)
- C8.4 Probabilistic Combinatorics (2024-25)
- C8.7 Optimal Control (2024-25)
- CCD Dissertations on a Mathematical Topic (2024-25)
- COD Dissertations on the History of Mathematics (2024-25)
- Michaelmas
2022 page: www.cs.ox.ac.uk/teaching/courses/qsoft/ Half of the problems are Jupyter Notebooks, not bad.
The orthogonal group has 2 connected components:
- one with determinant +1, which is itself a subgroup known as the special orthogonal group. These are pure rotations without a reflection.
- the other with determinant -1. This is not a subgroup as it does not contain the origin. It represents rotations with a reflection.
It is instructive to visualize how the looks like in :
- you take the first basis vector and move it to any other. You have therefore two angular parameters.
- you take the second one, and move it to be orthogonal to the first new vector. (you can choose a circle around the first new vector, and so you have another angular parameter.
- at last, for the last one, there are only two choices that are orthogonal to both previous ones, one in each direction. It is this directio, relative to the others, that determines the "has a reflection or not" thing
As a result it is isomorphic to the direct product of the special orthogonal group by the cyclic group of order 2:
A low dimensional example:because you can only do two things: to flip or not to flip the line around zero.
Note that having the determinant plus or minus 1 is not a definition: there are non-orthogonal groups with determinant plus or minus 1. This is just a property. E.g.:has determinant 1, but:so is not orthogonal.
Output: another sequence of complex numbers such that:Intuitively, this means that we are braking up the complex signal into sinusoidal frequencies:and is the amplitude of each sine.
- : is kind of magic and ends up being a constant added to the signal because
- : sinusoidal that completes one cycle over the signal. The larger the , the larger the resolution of that sinusoidal. But it completes one cycle regardless.
- : sinusoidal that completes two cycles over the signal
- ...
- : sinusoidal that completes cycles over the signal
Motivation: similar to the Fourier transform:In particular, the discrete Fourier transform is used in signal processing after a analog-to-digital converter. Digital signal processing historically likely grew more and more over analog processing as digital processors got faster and faster as it gives more flexibility in algorithm design.
- compression: a sine would use N points in the time domain, but in the frequency domain just one, so we can throw the rest away. A sum of two sines, only two. So if your signal has periodicity, in general you can compress it with the transform
- noise removal: many systems add noise only at certain frequencies, which are hopefully different from the main frequencies of the actual signal. By doing the transform, we can remove those frequencies to attain a better signal-to-noise
Sample software implementations:
- numpy.fft, notably see the example: numpy/fft.py
DFT of with 25 points
. This is a simple example of a discrete Fourier transform for a real input signal. It illustrates how the DFT takes N complex numbers as input, and produces N complex numbers as output. It also illustrates how the discrete Fourier transform of a real signal is symmetric around the center point. Quantum Processes and Computation course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
2022 page: www.cs.ox.ac.uk/teaching/courses/2022-2023/quantum/ (archive). Assignments are available:
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment1.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment2.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment3.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment4.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment5.pdf
- www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment6.pdf
2022 lecturer: Aleks Kissinger
The course would be better named ZX-calculus as it appears to be the only subject covered.
Year 4 of the computer science course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
Quantum Information course of the University of Oxford Hilary 2023 by
Ciro Santilli 40 Updated 2025-07-16
This section is about the version of the course offered on Hilary term 2023 (January).
2023: Jonathan Barrett
Algorithms and Data Structures course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
Computer science and philosophy masters course of the University of Oxford by
Ciro Santilli 40 Updated 2025-07-16
Public landing page: www.ox.ac.uk/admissions/undergraduate/courses/course-listing/computer-science-and-philosophy
Corresponding undergrad: Computer Science and Philosophy course of the University of Oxford.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





