The Astrophysical Journal is a peer-reviewed scientific journal that focuses on astronomy and astrophysics. Established in 1895, it is one of the leading journals in the field and is published by the American Astronomical Society (AAS). The journal publishes original research articles, reviews, and significant findings covering a wide range of topics related to the universe, including stellar and planetary formation, cosmic phenomena, cosmology, and the behavior of celestial objects.
Photo-oxidation of polymers refers to the chemical reactions that occur in polymers due to exposure to light (particularly ultraviolet (UV) light) and oxygen. This process can lead to the degradation of polymer materials, affecting their physical and chemical properties. ### Key Points about Photo-Oxidation of Polymers: 1. **Mechanism**: - Photons provide energy that can excite electrons in polymer chains, leading to the formation of free radicals.
Asymptotic theory in statistics is a framework that involves the behavior of statistical estimators, tests, or other statistical procedures as the sample size approaches infinity. The primary goal of asymptotic theory is to understand how statistical methods perform in large samples, providing insights into their properties, efficiency, and consistency. Key concepts in asymptotic theory include: 1. **Consistency**: An estimator is consistent if it converges in probability to the true parameter value as the sample size increases.
Research in astronomy and astrophysics involves the scientific study of celestial objects, phenomena, and the universe as a whole. It seeks to understand the nature of the cosmos, including the formation, evolution, and ultimate fate of stars, galaxies, planets, and other astronomical entities. Here's an overview of key areas in this field: ### Key Areas of Research 1. **Celestial Objects**: - **Stars**: Study of their formation (stellar evolution), life cycles, and properties.
Economics by Ciro Santilli 37 Updated +Created
E. Coli Whole Cell Model by Covert Lab / Run variants by Ciro Santilli 37 Updated +Created
It would be boring if we could only simulate the same condition all the time, so let's have a look at the different boundary conditions that we can apply to the cell!
We are able to alter things like the composition of the external medium, and the genome of the bacteria, which will make the bacteria behave differently.
The variant selection is a bit cumbersome as we have to use indexes instead of names, but one you know what you are doing, it is fine.
Of course, genetic modification is limited only to experimentally known protein interactions due to the intractability of computational protein folding and computational chemistry in general, solving those would bsai.
The Edinburgh Multiple Access System (EMAS) is a type of network protocol that was developed to facilitate communication in a multi-user environment, particularly in the context of packet-switched networks. It was designed to allow multiple users to share the same communication channel efficiently. The system is particularly notable for its work in the field of computer networking and was part of the broader exploration of various multiple access techniques during the development of early network systems.
E. Coli Whole Cell Model by Covert Lab / Publications by Ciro Santilli 37 Updated +Created
Unfortunately, due to lack of one page to rule them all, the on-Git tree publication list is meager, some of the most relevant ones seems to be:
The 20th century saw significant contributions from Italian physicists across various fields of physics, many of whom were instrumental in advancing scientific knowledge and technology. Here are some notable Italian physicists from that era: 1. **Enrico Fermi (1901–1954)**: A key figure in the development of quantum theory, nuclear and particle physics, Fermi is well-known for creating the first nuclear reactor, the Chicago Pile-1, and for his work on beta decay.
E. Coli Whole Cell Model by Covert Lab / Output overview by Ciro Santilli 37 Updated +Created
Run output is placed under out/:
Some of the output data is stored as .cpickle files. To observe those files, you need the original Python classes, and therefore you have to be inside Docker, from the host it won't work.
We can list all the plots that have been produced under out/ with
find -name '*.png'
Plots are also available in SVG and PDF formats, e.g.:
  • PNG: ./out/manual/plotOut/low_res_plots/massFractionSummary.png
  • SVG: ./out/manual/plotOut/svg_plots/massFractionSummary.svg The SVGs write text as polygons, see also: SVG fonts.
  • PDF: ./out/manual/plotOut/massFractionSummary.pdf
The output directory has a hierarchical structure of type:
./out/manual/wildtype_000000/000000/generation_000000/000000/
where:
  • wildtype_000000: variant conditions. wildtype is a human readable label, and 000000 is an index amongst the possible wildtype conditions. For example, we can have different simulations with different nutrients, or different DNA sequences. An example of this is shown at run variants.
  • 000000: initial random seed for the initial cell, likely fed to NumPy's np.random.seed
  • genereation_000000: this will increase with generations if we simulate multiple cells, which is supported by the model
  • 000000: this will presumably contain the cell index within a generation
We also understand that some of the top level directories contain summaries over all cells, e.g. the massFractionSummary.pdf plot exists at several levels of the hierarchy:
./out/manual/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/000000/plotOut/massFractionSummary.pdf
./out/manual/wildtype_000000/000000/generation_000000/000000/plotOut/massFractionSummary.pdf
Each of thoes four levels of plotOut is generated by a different one of the analysis scripts:
  • ./out/manual/plotOut: generated by python runscripts/manual/analysisVariant.py. Contains comparisons of different variant conditions. We confirm this by looking at the results of run variants.
  • ./out/manual/wildtype_000000/plotOut: generated by python runscripts/manual/analysisCohort.py --variant_index 0. TODO not sure how to differentiate between two different labels e.g. wildtype_000000 and somethingElse_000000. If -v is not given, a it just picks the first one alphabetically. TODO not sure how to automatically generate all of those plots without inspecting the directories.
  • ./out/manual/wildtype_000000/000000/plotOut: generated by python runscripts/manual/analysisMultigen.py --variant_index 0 --seed 0
  • ./out/manual/wildtype_000000/000000/generation_000000/000000/plotOut: generated by python runscripts/manual/analysisSingle.py --variant_index 0 --seed 0 --generation 0 --daughter 0. Contains information about a single specific cell.
Brain cell type by Ciro Santilli 37 Updated +Created
The *Publications of the Astronomical Society of Australia* (PASA) is a peer-reviewed academic journal that publishes research in all areas of astronomy and astrophysics. It serves as a platform for scientists to share their findings and advancements in the field. PASA covers a broad range of topics related to astronomy, including observational studies, theoretical research, and advancements in technology and instrumentation used in astronomical research.
E. Coli Whole Cell Model by Covert Lab / Other run variants by Ciro Santilli 37 Updated +Created
Besides time series run variants, conditions can also be selected directly without a time series as in:
python runscripts/manual/runSim.py --variant condition 1 1
which select row indices from reconstruction/ecoli/flat/condition/condition_defs.tsv. The above 1 1 would mean the second line of that file which starts with:
"condition" "nutrients" "genotype perturbations" "doubling time (units.min)" "active TFs"
"basal" "minimal" {} 44.0 []
"no_oxygen" "minimal_minus_oxygen" {} 100.0 []
"with_aa" "minimal_plus_amino_acids" {} 25.0 ["CPLX-125", "MONOMER0-162", "CPLX0-7671", "CPLX0-228", "MONOMER0-155"]
so 1 means no_oxygen.
Plasma physics encompasses a wide range of phenomena involving ionized gases (plasmas), which are composed of charged particles including ions and electrons. The behavior of plasmas is governed by a set of equations that describe how these charged particles interact with electromagnetic fields and with each other. Here are some fundamental equations and concepts relevant to plasma physics: 1. **Fluid Equations (Magnetohydrodynamics - MHD)**: - **Continuity Equation**: Describes the conservation of mass.
The 20th century saw significant contributions from Indian physicists to various fields of physics, many of whom made their mark both in India and internationally. Here are a few notable Indian physicists from that era: 1. **C. V. Raman (1888–1970)**: He was awarded the Nobel Prize in Physics in 1930 for his discovery of the Raman effect, which is the scattering of light and has applications in various fields including chemistry and material science.
East London Tech City, often referred to as "Silicon Roundabout," is a term used to describe a technology and startup hub primarily located in the London Borough of Hackney, specifically around the Old Street roundabout area. It emerged in the early 2010s as a center for technology, innovation, and entrepreneurship in London, attracting a wide range of tech companies, startups, and creative agencies.
The 20th century was a remarkable period for French physicists, who made significant contributions across various fields of physics. Here are a few notable figures: 1. **Marie Curie (1867-1934)**: Although much of her pioneering work on radioactivity occurred in the late 19th and early 20th centuries, her influence extended well into the 20th century.
Donald Davies by Wikipedia Bot 0
Donald Davies was a British computer scientist who is most noted for his work in the field of computer networking and for inventing packet switching. He was born on June 7, 1924, and passed away on May 28, 2009. In the 1960s, he developed the concept of breaking data into smaller packets for transmission over a network, which became a foundational principle for the modern Internet.
E. Coli Whole Cell Model by Covert Lab / Install and first run by Ciro Santilli 37 Updated +Created
At 7e4cc9e57de76752df0f4e32eca95fb653ea64e4 you basically need to use the Docker image on Ubuntu 21.04 due to pip breaking changes... (not their fault). Perhaps pyenv would solve things, but who has the patience for that?!?!
The Docker setup from README does just work. The image download is a bit tedius, as it requires you to create a GitHub API key as described in the README, but there must be reasons for that.
Once the image is downloaded, you really want to run is from the root of the source tree:
sudo docker run --name=wcm -it -v "$(pwd):/wcEcoli" docker.pkg.github.com/covertlab/wholecellecolirelease/wcm-full
This mounts the host source under /wcEcoli, so you can easily edit and view output images from your host. Once inside Docker we can compile, run the simulation, and analyze results with:
make clean compile &&
python runscripts/manual/runFitter.py &&
python runscripts/manual/runSim.py &&
python runscripts/manual/analysisVariant.py &&
python runscripts/manual/analysisCohort.py &&
python runscripts/manual/analysisMultigen.py &&
python runscripts/manual/analysisSingle.py
The meaning of each of the analysis commands is described at Section "Output overview".
As a Docker refresher, after you stop the container, e.g. by restarting your computer or running sudo docker stop wcm, you can get back into it with:
sudo docker start wcm
sudo docker run -it wcm bash
runscripts/manual/runFitter.py takes about 15 minutes, and it generates files such as reconstruction/ecoli/dataclasses/process/two_component_system.py (related) which is required to run the simulation, it is basically a part of the build.
runSim.py does the main simulation, progress output contains lines of type:
Time (s)  Dry mass     Dry mass      Protein          RNA    Small mol     Expected
              (fg)  fold change  fold change  fold change  fold change  fold change
========  ========  ===========  ===========  ===========  ===========  ===========
    0.00    403.09        1.000        1.000        1.000        1.000        1.000
    0.20    403.18        1.000        1.000        1.000        1.000        1.000
and then it ended on the Lenovo ThinkPad P51 (2017) at:
 2569.18    783.09        1.943        1.910        2.005        1.950        1.963

Simulation finished:
 - Length: 0:42:49
 - Runtime: 0:09:13
when the cell had almost doubled, and presumably divided in 42 minutes of simulated time, which could make sense compared to the 20 under optimal conditions.
E. Coli Whole Cell Model by Covert Lab / Condition by Ciro Santilli 37 Updated +Created
  • reconstruction/ecoli/flat/condition/nutrient/minimal.tsv contains the nutrients in a minimal environment in which the cell survives:
    "molecule id" "lower bound (units.mmol / units.g / units.h)" "upper bound (units.mmol / units.g / units.h)"
    "ADP[c]" 3.15 3.15
    "PI[c]" 3.15 3.15
    "PROTON[c]" 3.15 3.15
    "GLC[p]" NaN 20
    "OXYGEN-MOLECULE[p]" NaN NaN
    "AMMONIUM[c]" NaN NaN
    "PI[p]" NaN NaN
    "K+[p]" NaN NaN
    "SULFATE[p]" NaN NaN
    "FE+2[p]" NaN NaN
    "CA+2[p]" NaN NaN
    "CL-[p]" NaN NaN
    "CO+2[p]" NaN NaN
    "MG+2[p]" NaN NaN
    "MN+2[p]" NaN NaN
    "NI+2[p]" NaN NaN
    "ZN+2[p]" NaN NaN
    "WATER[p]" NaN NaN
    "CARBON-DIOXIDE[p]" NaN NaN
    "CPD0-1958[p]" NaN NaN
    "L-SELENOCYSTEINE[c]" NaN NaN
    "GLC-D-LACTONE[c]" NaN NaN
    "CYTOSINE[c]" NaN NaN
    If we compare that to reconstruction/ecoli/flat/condition/nutrient/minimal_plus_amino_acids.tsv, we see that it adds the 20 amino acids on top of the minimal condition:
    "L-ALPHA-ALANINE[p]" NaN NaN
    "ARG[p]" NaN NaN
    "ASN[p]" NaN NaN
    "L-ASPARTATE[p]" NaN NaN
    "CYS[p]" NaN NaN
    "GLT[p]" NaN NaN
    "GLN[p]" NaN NaN
    "GLY[p]" NaN NaN
    "HIS[p]" NaN NaN
    "ILE[p]" NaN NaN
    "LEU[p]" NaN NaN
    "LYS[p]" NaN NaN
    "MET[p]" NaN NaN
    "PHE[p]" NaN NaN
    "PRO[p]" NaN NaN
    "SER[p]" NaN NaN
    "THR[p]" NaN NaN
    "TRP[p]" NaN NaN
    "TYR[p]" NaN NaN
    "L-SELENOCYSTEINE[c]" NaN NaN
    "VAL[p]" NaN NaN
    so we guess that NaN in the upper mound likely means infinite.
    We can try to understand the less obvious ones:
    • ADP: TODO
    • PI: TODO
    • PROTON[c]: presumably a measure of pH
    • GLC[p]: glucose, this can be seen by comparing minimal.tsv with minimal_no_glucose.tsv
    • AMMONIUM: ammonium. This appears to be the primary source of nitrogen atoms for producing amino acids.
    • CYTOSINE[c]: hmmm, why is external cytosine needed? Weird.
  • reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/ contains sequences of conditions for each time. For example:
    • reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/000000_basal.tsv contains:
      "time (units.s)" "nutrients"
      0 "minimal"
      which means just using reconstruction/ecoli/flat/condition/nutrient/minimal.tsv until infinity. That is the default one used by runSim.py, as can be seen from ./out/manual/wildtype_000000/000000/generation_000000/000000/simOut/Environment/attributes/nutrientTimeSeriesLabel which contains just 000000_basal.
    • reconstruction/ecoli/flat/reconstruction/ecoli/flat/condition/timeseries/000001_cut_glucose.tsv is more interesting and contains:
      "time (units.s)" "nutrients"
      0 "minimal"
      1200 "minimal_no_glucose"
      so we see that this will shift the conditions half-way to a condition that will eventually kill the bacteria because it will run out of glucose and thus energy!
    Timeseries can be selected with --variant nutrientTimeSeries X Y, see also: run variants.
    We can use that variant with:
    VARIANT="condition" FIRST_VARIANT_INDEX=1 LAST_VARIANT_INDEX=1 python runscripts/manual/runSim.py
  • reconstruction/ecoli/flat/condition/condition_defs.tsv contains lines of form:
    "condition" "nutrients"                "genotype perturbations" "doubling time (units.min)" "active TFs"
    "basal"     "minimal"                  {}                       44.0                        []
    "no_oxygen" "minimal_minus_oxygen"     {}                       100.0                       []
    "with_aa"   "minimal_plus_amino_acids" {}                       25.0                        ["CPLX-125", "MONOMER0-162", "CPLX0-7671", "CPLX0-228", "MONOMER0-155"]
    • condition refers to entries in reconstruction/ecoli/flat/condition/condition_defs.tsv
    • nutrients refers to entries under reconstruction/ecoli/flat/condition/nutrient/, e.g. reconstruction/ecoli/flat/condition/nutrient/minimal.tsv or reconstruction/ecoli/flat/condition/nutrient/minimal_plus_amino_acids.tsv
    • genotype perturbations: there aren't any in the file, but this suggests that genotype modifications can also be incorporated here
    • doubling time: TODO experimental data? Because this should be a simulation output, right? Or do they cheat and fix doubling by time?
    • active TFs: this suggests that they are cheating transcription factors here, as those would ideally be functions of other more basic inputs

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact