Like PCR, but does not require thermal cycling. Thus the "isothermal" in the name: iso means same, so "same temperature".
Not needing the thermo cycling means that the equipment needed is much smaller and cheaper it seems.
Video 1.
Loop Mediated Isothermal Amplification (LAMP) Tutorial by New England Biolabs (2015)
Source. Explains the basic LAMP concept well.
Most of these are going to be Whole-genome sequencing of some model organism:
en.wikipedia.org/wiki/Whole_genome_sequencing#History lists them all. Basically th big "firsts" all happened in the 1990s and early 2000s.
DNA microarray by Ciro Santilli 40 Updated 2025-07-16
Can be seen as a cheap form of DNA sequencing that only test for a few hits. Some major applications:
Metagenomics by Ciro Santilli 40 Updated 2025-07-16
Experiments that involve sequencing bulk DNA found in a sample to determine what species are present, as opposed to sequencing just a single specific specimen. Examples of samples that are often used:
One related application which most people would not consider metagenomics, is that of finding circulating tumor DNA in blood to detect tumors.
RNA-Seq by Ciro Santilli 40 Updated 2025-07-16
Sequencing the DNA tells us what the organism can do. Sequencing the RNA tells us what the organism is actually doing at a given point in time. The problem is not killing the cell while doing that. Is it possible to just take a chunk of the cell to sequence without killing it maybe?
Illumina by Ciro Santilli 40 Updated 2025-07-16
The by far dominating DNA sequencing company of the late 2000's and 2010's due to having the smallest cost per base pair.
Illumina actually bought their 2010's dominating technology from a Cambridge company called Solexa.
To understand how Illumina's technology works basically, watch this video: Video 1. "Illumina Sequencing by Synthesis by Illumina (2016)".
Video 1.
Illumina Sequencing by Synthesis by Illumina (2016)
Source.
The key innovation of this method is the Bridge amplification step, which produces a large amount of identical DNA strands.
Bridge amplification by Ciro Santilli 40 Updated 2025-07-16
This is one of the the key innovations of the Illumina (originally Solexa) sequencing.
This step is genius because sequencing is basically a signal-to-noise problem, as you are trying to observe individual tiny nucleotides mixed with billions of other tiny nucleotides.
With bridge amplification, we group some of the nucleotides together, and multiply the signal millions of times for that part of the DNA.
Red clump stars are a specific type of red giant star in the later stages of stellar evolution. These stars are typically in the horizontal branch phase, which follows the giant phase of a star's life cycle. Red clump stars represent a phase where stars have exhausted the hydrogen in their cores and are now fusing helium into carbon and oxygen. They are somewhat hotter and brighter than ordinary red giants, and their spectra show strong absorption lines indicative of helium fusion.
Exoplanets detected by radial velocity, also known as the Doppler method or the radial velocity method, is a technique used to identify exoplanets by observing the gravitational influence they have on their host stars. This method takes advantage of the Doppler effect, where the light emitted by a star shifts in wavelength depending on its motion relative to an observer.
Collisional excitation is a process in which an atom or molecule absorbs energy during a collision with a particle, such as another atom, molecule, or electron. This energy transfer can promote an electron within the atom or molecule to a higher energy state, or excited state. Here's how it works: 1. **Encounter**: During a collision, kinetic energy from the colliding particle (which can be a gas particle or an electron) is transferred to the target atom or molecule.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact