A **Cartesian monoidal category** is a specific type of monoidal category that is particularly relevant in category theory and has applications in various fields, including mathematical logic, computer science, and topology. Let's break it down: ### Definition Components: 1. **Category**: A category consists of objects and morphisms (arrows) between those objects, satisfying certain properties such as composition and identity.
Categorical quantum mechanics is a branch of theoretical physics and mathematics that applies category theory to the study of quantum mechanics. It seeks to provide a unified framework for understanding quantum phenomena by utilizing concepts from category theory, which is a branch of mathematics focused on the abstract relationships and structures between different mathematical objects. In traditional quantum mechanics, physical systems are often described using Hilbert spaces, observables represented by operators, and state transformations via unitary operators.
In mathematics, particularly in the field of topology, a **compact object** refers to a space that is compact in the topological sense. A topological space is said to be compact if every open cover of the space has a finite subcover.
Breakdown:
Zen master and the little boy scene from Charlie Wilson's War
. Source. This is how Ciro Santilli first heard the old man lost his horse! The scene happens after the Americans seem to have had sucess in arming the Taliban in the 1980s to fight the Soviets, and then they decide to stop all monetary help to rebuild the country, which then leads to a terrorism threat many years later.The term "Concrete category" can refer to different concepts in various fields, such as mathematics, philosophy, or even programming. However, one of the most prominent usages is in the context of category theory in mathematics. ### In Category Theory: A **concrete category** is a category equipped with a "concrete" representation of its objects and morphisms as sets and functions.
The main four instruments are undoubtedly:but there is also amazing content on others which must not be missed, including:
Infinite Wikipedia instrument list: en.wikipedia.org/wiki/List_of_Chinese_musical_instruments
25 musical instruments OF China by Learning Music Hub
. Source. Great video, covers all the most important ones briefly with examples of varying relevance.A beginner’s guide to Chinese musical instruments by SCMP
. Source. 2024. Terrible editing, way to hard to see instrument name.As of my last update in October 2023, "Corestriction" does not appear to be a widely recognized term in mainstream literature, technology, or specific academic fields. It might be a typographical error or a niche term not documented in major references.
In mathematics, "descent" refers to a concept used in various fields, including algebraic geometry, number theory, and topology. The term can have several specific meanings depending on the context: 1. **Algebraic Geometry (Grothendieck Descent)**: In this context, descent theory deals with understanding how geometric properties of schemes can be "descended" from one space to another.
Dialectica space is a mathematical construct used primarily in the context of category theory and functional analysis. It is essentially a linear topological vector space that plays a significant role in the study of various areas in mathematics, including type theory, category theory, and model theory. The term "Dialectica" is often associated with the Dialectica interpretation, which is a translation of intuitionistic logic into a more constructive or computational framework.
DisCoCat, short for "Distributional Compositional Category Theory," is a framework that combines ideas from distributional semantics and categorical theory in order to model the meaning of words and phrases in natural language. It was introduced as part of research in computational linguistics and philosophy of language, particularly in the context of understanding how meanings can be composed from the meanings of their parts.
Bibliography:
In category theory, the concept of "dual" is used to refer to the correspondence between certain categorical constructs by reversing arrows (morphisms) in a category.
Duality theory for distributive lattices is an important concept in lattice theory and order theory, providing a framework for understanding the relationships between elements of a lattice and their duals.
In category theory, an "element" refers to a specific object that belongs to a particular set or structure within the context of a category. More formally, if we have a category \( C \) and an object \( A \) in that category, an element of \( A \) can be thought of as a morphism from a terminal object \( 1 \) (which represents a singleton set) to \( A \).
In category theory, an **envelope** of a category is a construction that can relate to many different notions depending on the context. Generally, the term "envelope" is associated with creating a certain "larger" category or structure that captures the essence of a given category. It often refers to a way to embed or represent a category with certain properties or constraints.
A product category is a classification system that groups together products based on shared characteristics, functions, or target market attributes. It helps businesses organize their offerings and enables consumers to easily understand and compare different products. For example, product categories can include broad classifications like electronics, clothing, and home goods, or more specific categories such as smartphones, winter jackets, or kitchen appliances.
It seems like there might be a typo or misunderstanding in your question, as "Pulation square" does not refer to any well-known concept in mathematics or any other field. If you're referring to "population square," it could relate to population density or statistical concepts, but this isn't a standard term.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact