Rate My Professors by Ciro Santilli 35 Updated +Created
Mishima: A Life in Four Chapters by Ciro Santilli 35 Updated +Created
Ciro can relate strongly to the level of passion depicted in this film: Section "Don't be a pussy". It almost feels like a business film in that a sense, where the startup is the authors career and passions.
Minkowski inner product by Ciro Santilli 35 Updated +Created
This form is not really an inner product in the common modern definition, because it is not positive definite, only a symmetric bilinear form.
Micro Bit getting started by Ciro Santilli 35 Updated +Created
When plugged into Ubuntu 22.04 via the USB Micro-B the Micro Bit mounts as:
/media/$USER/MICROBIT/
e.g.:
/media/ciro/MICROBIT/
for username ciro.
Loading the program is done by simply copying a .hex binary into the image e.g. with:
cp ~/Downloads/microbit_program.hex /media/$USER/MICROBIT/
The file name does not matter, only the .hex extension.
The back power light flashes while upload is happening.
Flashing takes about 10-15 seconds for the 1.8 MB scroll display hello world from microbit-micropython.readthedocs.io/en/v1.0.1/tutorials/hello.html:
from microbit import *
display.scroll("Hello, World!")
and the program starts executing immediately after flash ends.
You can restart the program by clicking the reset button near the USB. When you push down the program dies, and it restarts as soon as you release the button.
Microphone by Ciro Santilli 35 Updated +Created
Video 1.
Testing and Circuit for a Condenser microphone by RSD Academy (2018)
Source.
Not very numerical, but shows a simple working breadboard circuit and an oscilloscope. He whistles with his mouth to get a pretty pure frequency.
That type of microphone requires a bias voltage. The circuit is in Ciro's ASCII art circuit diagram notation:
DC_9---R_10k--+--MICROPHONE--+--G
              |              |
              +-------V------+
Video 2.
Soundwaves on an oscilloscope by Animated Science (2015)
Source. Dude speaking to microphone. Some analysis of how different sounds look like. No circuit diagram.
Ciro's Edict #7 / Advances by Ciro Santilli 35 Updated +Created
Drug tolerance by Ciro Santilli 35 Updated +Created
Microscope Project (YouTube channel) by Ciro Santilli 35 Updated +Created
As of 2022, this channel is still finding its feet. But it has promise.
Unfortunately it does not show sample preparation, and it does not use controlled cultures, so we are never sure which species are represented.
Microsoft by Ciro Santilli 35 Updated +Created
And also their monopolistic practices: United States v. Microsoft Corp.
However, like all big tech companies with infinite money, they do end up doing some cool things in their research department, Microsoft Research, notably for Ciro Santilli being:
Microsoft PowerPoint by Ciro Santilli 35 Updated +Created
Parasites tend to have smaller DNAs by Ciro Santilli 35 Updated +Created
If you live in the relatively food abundant environment of another cell, then you don't have to be able to digest every single food source in existence, of defend against a wide range of predators.
And likely you also want to be as small as possible to evade the host's immune system.
Power, Sex, Suicide by Nick Lane (2006) section "Gene loss as an evolutionary trajectory" puts it well:
One of the most extreme examples of gene loss is Rickettsia prowazekii, the cause of typhus. [...] Over evolutionary time Rickettsia has lost most of its genes, and now has a mere  protein-coding genes left. [...] Rickettsia is a tiny bacterium, almost as small as a virus, which lives as a parasite inside other cells. It is so well adapted to this lifestyle that it can no longer survive outside its host cells. [...] It was able to lose most of its genes in this way simply because they were not needed: life inside other cells, if you can survive there at all, is a spoonfed existence.
and also section "How to lose the cell wall without dying" page 184 has some related mentions:
While many types of bacteria do lose their cell wall during parts of their life cycle only two groups of prokaryotes have succeeded in losing their cell walls permanently, yet lived to tell the tale. It's interesting to consider the extenuating circumstances that permitted them to do so.
[...]
One group, the Mycoplasma, comprises mostly parasites, many of which live inside other cells. Mycoplasma cells are tiny, with very small genomes. M. genitalium, discovered in 1981, has the smallest known genome of any bacterial cell, encoding fewer than 500 genes. M. genitalium, discovered in 1981, has the smallest known genome of any bacterial cell, encoding fewer than 500 genes. [...] Like Rickettsia, Mycoplasma have lost virtually all the genes required for making nucleotides, amino acids, and so forth.

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact