Quantum computing by Ciro Santilli 37 Updated 2025-07-16
Quantum is getting hot in 2019, and even Ciro Santilli got a bit excited: quantum computing could be the next big thing.
No useful algorithm has been economically accelerated by quantum yet as of 2019, only useless ones, but the bets are on, big time.
To get a feeling of this, just have a look at the insane number of startups that are already developing quantum algorithms for hardware that doesn't/barely exists! quantumcomputingreport.com/players/privatestartup (archive). Some feared we might be in a bubble: Are we in a quantum computing bubble?
To get a basic idea of what programming a quantum computer looks like start by reading: Section "Quantum computing is just matrix multiplication".
Some people have their doubts, and that is not unreasonable, it might truly not work out. We could be on the verge of an AI winter of quantum computing. But Ciro Santilli feels that it is genuinely impossible to tell as of 2020 if something will work out or not. We really just have to try it out and see. There must have been skeptics before every single next big thing.
Quantum algorithm by Ciro Santilli 37 Updated 2025-07-16
This is the true key question: what are the most important algorithms that would be accelerated by quantum computing?
Some candidates:
Do you have proper optimization or quantum chemistry algorithms that will make trillions?
Maybe there is some room for doubt because some applications might be way better in some implementations, but we should at least have a good general idea.
However, clear information on this really hard to come by, not sure why.
Quantum Algorithm Zoo by Ciro Santilli 37 Updated 2025-07-16
The most comprehensive list is the amazing curated and commented list of quantum algorithms as of 2020.
There is no fundamental difference between them, a quantum algorithm is a quantum circuit, which can be seen as a super complicated quantum gate.
Perhaps the greats practical difference is that algorithms tend to be defined for an arbitrary number of N qubits, i.e. as a function for that each N produces a specific quantum circuit with N qubits solving the problem. Most named gates on the other hand have fixed small sizes.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact