Google Quantum AI by Ciro Santilli 40 Updated 2025-07-16
Google's quantum hardware/software effort.
The "AI" part is just prerequisite buzzword of the AI boom era for any project and completely bullshit.
According to job postings such as: archive.ph/wip/Fdgsv their center is in Goleta, California, near Santa Barbara. Though Google tends to promote it more as Santa Barbara, see e.g. Daniel's t-shirt at Video "Building a quantum computer with superconducting qubits by Daniel Sank (2019)".
Video 1.
Control of transmon qubits using a cryogenic CMOS integrated circuit (QuantumCasts) by Google (2020)
Source. Fantastic video, good photos of the Google Quantum AI setup!
Daniel Sank by Ciro Santilli 40 Updated 2025-07-16
Started at Google Quantum AI in 2014.
Has his LaTeX notes at: github.com/DanielSank/theory. One day he will convert to OurBigBook.com. Interesting to see that he is able to continue his notes despite being at Google.
Sycamore processor by Ciro Santilli 40 Updated 2025-07-16
This is a good read: quantumai.google/hardware/datasheet/weber.pdf May 14, 2021. Their topology is so weird, not just a rectangle, one wonders why! You get different error rates in different qubits, it's mad.
Figure 1.
Google Sycamore Weber quantum computer connectivity graph
. Weber is a specific processor of the Sycamore family. From this we see it clearly that qubits are connected to at most 4 other qubits, and that the full topology is not just a simple rectangle.
IBM Quantum Computing by Ciro Santilli 40 Updated 2025-07-16
The term "IBM Q" has been used in some promotional material as of 2020, e.g.: www.ibm.com/mysupport/s/topic/0TO50000000227pGAA/ibm-q-quantum-computing?language=en_US though the fuller form "IBM Quantum Computing" is somewhat more widely used.
Linux insides by Ciro Santilli 40 Updated 2025-07-16
Documents the Linux kernel. Somewhat of a competitor to Linux Kernel Module Cheat, but more wordy and less automated.
Rigetti Computing by Ciro Santilli 40 Updated 2025-07-16
Video 1.
Forest: an Operating System for Quantum Computing by Guen Prawiroatmodjo (2017)
Source. The title of the talk is innapropriate, this is a very basic overview of the entire Rigetti Computing stack. Still some fine mentions. Her name is so long, TODO origin? She later moved to Microsoft Quantum: www.linkedin.com/in/gueneverep/.
Trapped ion people acknowledge that they can't put a million qubits in on chip (TODO why) so they are already thinking of ways to entangle separate chips. Thinking is maybe the key word here. One of the propoesd approaches inolves optical links. Universal Quantum for example explicitly rejects that idea in favor of electric field link modularity.
NQIT by Ciro Santilli 40 Updated 2025-07-16
Video 1.
Quantum Computing with Networked Ion traps by NQIT (2018)
Source. The video is a bit useless. But it does show the networked approach proposal a little bit. Universal Quantum's homepage particularly rejects that.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact