Although it is impossible to understand without examples in mind, try to get familiar with the manuals as soon as possible.
Specially interesting is Figure 4-4 "Formats of CR3 and Paging-Structure Entries with 32-Bit Paging", which gives the key data structures.
What if Process 1 tries to access 0x00003000, which is not present?
The hardware notifies the software via a Page Fault Exception.
When an exception happens, the CPU jumps to an address that the OS had previously registered as the fault handler. This is usually done at boot time by the OS.
This could happen for example due to a programming error:
int *is = malloc(1);
is[2] = 1;
but there are cases where it is not a bug, for example in Linux when:
  • the program wants to increase its stack.
    It just tries to accesses a certain byte in a given possible range, and if the OS is happy it adds that page to the process address space, otherwise, it sends a signal to the process.
  • the page was swapped to disk.
    The OS will need to do some work behind the processes back to get the page back into RAM.
    The OS can discover that this is the case based on the contents of the rest of the page table entry, since if the present flag is clear, the other entries of the page table entry are completely left for the OS to to what it wants.
    On Linux for example, when present = 0:
    • if all the fields of the page table entry are 0, invalid address.
    • else, the page has been swapped to disk, and the actual values of those fields encode the position of the page on the disk.
In any case, the OS needs to know which address generated the Page Fault to be able to deal with the problem. This is why the nice IA32 developers set the value of cr2 to that address whenever a Page Fault occurs. The exception handler can then just look into cr2 to get the address.
Atom Computing by Ciro Santilli 37 Updated 2025-07-16
These people are cool.
They use optical tweezers to place individual atoms floating in midair, and then do stuff to entangle their nuclear spins.
The key experiment/phenomena that sets the basis for photonic quantum computing is the two photon interference experiment.
The physical representation of the information encoding is very easy to understand:
  • input: we choose to put or not photons into certain wires or no
  • interaction: two wires pass very nearby at some point, and photons travelling on either of them can jump to the other one and interact with the other photons
  • output: the probabilities that photos photons will go out through one wire or another
Video 1.
Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)
Source. This is a good introduction to a photonic quantum computer. Highly recommended.
The algorithmically minded will have noticed that paging requires associative array (like Java Map of Python dict()) abstract data structure where:
  • the keys are linear pages addresses, thus of integer type
  • the values are physical page addresses, also of integer type
The single level paging scheme uses a simple array implementation of the associative array:
  • the keys are the array index
  • this implementation is very fast in time
  • but it is too inefficient in memory
and in C pseudo-code it looks like this:
linear_address[0]      = physical_address_0
linear_address[1]      = physical_address_1
linear_address[2]      = physical_address_2
...
linear_address[2^20-1] = physical_address_N
But there another simple associative array implementation that overcomes the memory problem: an (unbalanced) k-ary tree.
A K-ary tree, is just like a binary tree, but with K children instead of 2.
Using a K-ary tree instead of an array implementation has the following trade-offs:
  • it uses way less memory
  • it is slower since we have to de-reference extra pointers
In C-pseudo code, a 2-level K-ary tree with K = 2^10 looks like this:
level0[0] = &level1_0[0]
    level1_0[0]      = physical_address_0_0
    level1_0[1]      = physical_address_0_1
    ...
    level1_0[2^10-1] = physical_address_0_N
level0[1] = &level1_1[0]
    level1_1[0]      = physical_address_1_0
    level1_1[1]      = physical_address_1_1
    ...
    level1_1[2^10-1] = physical_address_1_N
...
level0[N] = &level1_N[0]
    level1_N[0]      = physical_address_N_0
    level1_N[1]      = physical_address_N_1
    ...
    level1_N[2^10-1] = physical_address_N_N
and we have the following arrays:
  • one directory, which has 2^10 elements. Each element contains a pointer to a page table array.
  • up to 2^10 pagetable arrays. Each one has 2^10 4 byte page entries.
and it still contains 2^10 * 2^10 = 2^20 possible keys.
K-ary trees can save up a lot of space, because if we only have one key, then we only need the following arrays:
  • one directory with 2^10 entries
  • one pagetable at directory[0] with 2^10 entries
  • all other directory[i] are marked as invalid, don't point to anything, and we don't allocate pagetable for them at all
PsiQuantum by Ciro Santilli 37 Updated 2025-07-16
Good talk by CEO before starting the company which gives insight on what they are very likely doing: Video "Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)"
PsiQuantum appears to be particularly secretive, even more than other startups in the field.
They want to reuse classical semiconductor fabrication technologies, notably they have close ties to GlobalFoundries.
So he went to the US and raised N times more from the American military-industrial complex.
Bibliography:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact