The orthogonal group is the group of all matrices that preserve the dot product by
Ciro Santilli 37 Updated 2025-07-16
The orthogonal group is the group of all invertible matrices where the inverse is equal to the transpose by
Ciro Santilli 37 Updated 2025-07-16
Let's show that this definition is equivalent to the orthogonal group is the group of all matrices that preserve the dot product.
Note that:and for that to be true for all possible and then we must have:i.e. the matrix inverse is equal to the transpose.
These matricese are called the orthogonal matrices.
TODO is there any more intuitive way to think about this?
We can reach it by taking the rotations in three directions, e.g. a rotation around the z axis:then we derive and evaluate at 0: therefore represents the infinitesimal rotation.
Note that the exponential map reverses this and gives a finite rotation around the Z axis back from the infinitesimal generator :
Repeating the same process for the other directions gives:We have now found 3 linearly independent elements of the Lie algebra, and since has dimension 3, we are done.
Ciro Santilli dislikes the fact that they take themselves too seriously. Ciro prefers the jokes and tech approach.
E.g. a Galilean transformation generally changes the exact values of coordinates, but not the form of the laws of physics themselves.
Lorentz covariance is the main context under which the word "covariant" appears, because we really don't want the form of the equations to change under Lorentz transforms, and "covariance" is often used as a synonym of "Lorentz covariance".
TODO some sources distinguish "invariant" from "covariant": invariant vs covariant.
Subgroup of the Poincaré group without translations. Therefore, in those, the spacetime origin is always fixed.
Or in other words, it is as if two observers had their space and time origins at the exact same place. However, their space axes may be rotated, and one may be at a relative speed to the other to create a Lorentz boost. Note however that if they are at relative speeds to one another, then their axes will immediately stop being at the same location in the next moment of time, so things are only valid infinitesimally in that case.
This group is made up of matrix multiplication alone, no need to add the offset vector: space rotations and Lorentz boost only spin around and bend things around the origin.
One definition: set of all 4x4 matrices that keep the Minkowski inner product, mentioned at Physics from Symmetry by Jakob Schwichtenberg (2015) page 63. This then implies:
The frequency range of Wi-Fi, which falls in the microwave range, is likely chosen to allow faster data transfer than say, FM broadcasting, while still being relatively transparent to walls (though not as much).
This is the easiest one to do iteratively:
- pop and visit
- push right to stack
- push left to stack
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





