Currently an informal name for the Standard Model
Chronological outline of the key theories:
- Maxwell's equations
- Schrödinger equation
- Date: 1926
- Numerical predictions:
- hydrogen spectral line, excluding finer structure such as 2p up and down split: en.wikipedia.org/wiki/Fine-structure_constant
- Dirac equation
- Date: 1928
- Numerical predictions:
- hydrogen spectral line including 2p split, but excluding even finer structure such as Lamb shift
- Qualitative predictions:
- Antimatter
- Spin as part of the equation
- quantum electrodynamics
- Date: 1947 onwards
- Numerical predictions:
- Qualitative predictions:
- Antimatter
- spin as part of the equation
As of the 20th century, this can be described well as "the phenomena described by Maxwell's equations".
Back through its history however, that was not at all clear. This highlights how big of an achievement Maxwell's equations are.
Explains the propagation of light as a wave, and matches the previously known relationship between the speed of light and electromagnetic constants.
The equations are a limit case of the more complete quantum electrodynamics, and unlike that more general theory account for the quantization of photon.
The system consists of 6 unknown functions that map 4 variables: time t and the x, y and z positions in space, to a real number:and two known input functions:
- , , : directions of the electric field
- , , : directions of the magnetic field
Due to the conservation of charge however, those input functions have the following restriction:
Equation 1.
Charge conservation
. Also consider the following cases:
The goal of finding and is that those fields allow us to determine the force that gets applied to a charge via the Equation "Lorentz force", and then to find the force we just need to integrate over the entire body.
Finally, now that we have defined all terms involved in the Maxwell equations, let's see the equations:
Equation 2.
Gauss' law
. Equation 3.
Gauss's law for magnetism
. Equation 4.
Faraday's law
. Equation 5.
Ampere's circuital law
. You should also review the intuitive interpretation of divergence and curl.
Carleman's inequality is a mathematical result in the field of functional analysis and approximation theory. It provides a bound on the norms of a function based on the norms of its derivatives. Specifically, it is often used in the context of the spaces of functions with certain smoothness properties. One of the most common forms of Carleman's inequality is related to the Sobolev spaces and is used to show the equivalence of certain norms.
As seen from explicit scalar form of the Maxwell's equations, this expands to 8 equations, so the question arises if the system is over-determined because it only has 6 functions to be determined.
As explained on the Wikipedia page however, this is not the case, because if the first two equations hold for the initial condition, then the othe six equations imply that they also hold for all time, so they can be essentially omitted.
It is also worth noting that the first two equations don't involve time derivatives. Therefore, they can be seen as spacial constraints.
TODO: the electric field and magnetic field can be expressed in terms of the electric potential and magnetic vector potential. So then we only need 4 variables?
Is implied by Gauss' law if Maxwell's equations: physics.stackexchange.com/questions/44418/are-the-maxwells-equations-enough-to-derive-the-law-of-coulomb
The "static" part is important: if this law were true for moving charges, we would be able to transmit information instantly at infinite distances. This is basically where the idea of field comes in.
Coulomb's Law experiment with torsion balance with a mirror on the balance to amplify rotations by uclaphysics (2010)
Source. Understanding Electromagnetic Radiation! by Learn Engineering (2019)
Source. Shows animations of a dipole antenna which illustrates well how radiation is emitted from moving charges and travels at the speed of light. Existence and uniqueness of solutions to Maxwell's equations by
Ciro Santilli 37 Updated 2025-07-16
In the context of Maxwell's equations, it is vector field that is one of the inputs of the equation.
Section "Maxwell's equations with pointlike particles" asks if the theory would work for pointlike particles in order to predict the evolution of this field as part of the equations themselves rather than as an external element.
Measured in amperes in the International System of Units.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





