Mathematical practice refers to the habits, processes, and reasoning that mathematicians and students use when engaging with mathematical concepts and problems. It encompasses a range of skills and approaches that enable individuals to effectively understand, communicate, and apply mathematical ideas. The concept is often associated with standards in mathematics education, such as those outlined in the Common Core State Standards (CCSS) in the United States.
The term "semi-infinite" can refer to a concept in various fields, such as mathematics, physics, and engineering. Generally, it describes a scenario or object that extends infinitely in one direction while having a finite boundary in the opposite direction. Here are a few contexts in which "semi-infinite" might be used: 1. **Mathematics/Geometry**: In geometry, a semi-infinite line is a ray that starts at a particular point and extends infinitely in one direction.
A Schwarz function, also known as a "test function" in the context of distribution theory, is a smooth function that rapidly decreases at infinity along with all its derivatives. More formally, a function \( f: \mathbb{R}^n \to \mathbb{R} \) is called a Schwarz function if it satisfies the following conditions: 1. \( f \) is infinitely differentiable (i.e., \( f \in C^\infty \)).
SNARK, which stands for "Succinct Non-interactive ARguments of Knowledge," is a cryptographic proof system that allows one party (the prover) to convince another party (the verifier) that a statement is true without disclosing any additional information regarding the statement itself. This is particularly useful in contexts where privacy and efficiency are critical.
A restricted root system typically refers to a situation in plants where the growth and development of the root system are limited due to various environmental or physical constraints. This can occur due to factors like: 1. **Soil Composition**: Poor soil conditions, such as compacted soil or low nutrient availability, can inhibit root development.
The McShane integral is a concept in real analysis that extends the notion of the Riemann integral to certain situations where the Riemann integral may not be applicable. It is named after the mathematician James McShane. ### Definition The McShane integral is defined for bounded functions on an interval \([a, b]\) in such a way that it can handle some functions that are not Riemann integrable due to issues like discontinuities.
A "magic polygon" typically refers to a geometric figure that has special properties that are often related to magic squares or magic figures. The most common characteristics of magic polygons include: 1. **Magic Squares**: Often, magic polygons are related to magic squares that can be arranged in polygonal shapes, where the sums of numbers along each row, column, and diagonal are the same.
A simplicial group is a kind of algebraic structure that arises in the context of simplicial sets and homotopy theory. It can be understood as a group that is associated with a simplicial set, which is a combinatorial object used to study topological spaces. ### Definition A **simplicial group** is defined as a simplicial object in the category of groups.
The term "jumping line" can refer to different concepts depending on the context. Here are a few possibilities: 1. **In Literature or Poetry**: "Jumping line" may refer to a stylistic device where a line of text abruptly shifts in tone, topic, or imagery, creating a jarring or surprising effect for the reader.
The Institute of Mathematics of the Polish Academy of Sciences (Instytut Matematyki Polskiej Akademii Nauk, IM PAN) is a prominent research institution in Poland dedicated to the study of mathematics. Established in 1952, it is part of the Polish Academy of Sciences, which is the nation's leading scholarly organization. The Institute's main objectives include conducting high-level research in various fields of mathematics, providing education and training for mathematicians, and promoting mathematical knowledge both in Poland and internationally.
A hierarchical decision process is a structured approach to decision-making that breaks down complex problems into simpler, more manageable components, organized in a hierarchy. This method is often applied in various fields, including management, engineering, social sciences, and artificial intelligence. Here's a brief overview of its characteristics and functionalities: ### Key Features: 1. **Decomposition**: The primary complex decision is divided into smaller sub-decisions or components.
Physicists come from diverse nationalities and backgrounds, as the field of physics is a global discipline.
Aristotelian realist philosophy of mathematics refers to a perspective on the nature of mathematical entities and their existence, heavily influenced by the ideas of Aristotle and his metaphysical framework. This point of view stands in contrast to other philosophical positions such as Platonism, nominalism, and formalism.
Gottfried Wilhelm Leibniz (1646-1716) was a significant German philosopher, mathematician, and polymath whose ideas and inventions have had a lasting impact on various fields. Below is an outline that summarizes key aspects of his life, works, and contributions: ### I. Introduction A. Overview of Leibniz's significance B. Brief context of the era (17th century) ### II. Biographical Information A.
Euler–Boole summation is a formula used to express the sum of a sequence via its values at certain points, specifically in relation to finite differences. It is named after the mathematicians Leonhard Euler and George Boole. The general idea behind Euler–Boole summation is that it can be used to convert sums of discrete functions into integrals, allowing mathematicians to analyze sequences and their properties in a more continuous manner.
The H-maxima transform is a morphological operation used in image processing, specifically for analyzing and extracting features from images. It is a method that highlights the maxima of an image that are higher than a certain threshold value, referred to as the "h" parameter. The transform can be particularly useful in tasks such as segmentation and object detection.
The Discovery system in the context of AI research typically refers to a framework or platform designed to facilitate the exploration, experimentation, and understanding of artificial intelligence technologies and methodologies. While there isn't a single, universally recognized "Discovery system" in AI, several key themes and components are often associated with this concept: 1. **Research and Exploration**: Discovery systems enable researchers to probe new algorithms, models, and theoretical frameworks in AI. This may include tools for simulating, testing, and visualizing findings.
The term "convolution quotient" is not a standard term in mathematics or signal processing, but it may refer to a couple of different concepts depending on the context. Here's a breakdown of what it could mean: 1. **Convolution**: In mathematics and signal processing, convolution is a mathematical operation that combines two functions (or signals) to produce a third function.
The wedge symbol (∧) is commonly used in mathematics and logic, particularly in the context of operations and expressions. Here are a few of its common uses: 1. **Logic**: In propositional logic, the wedge symbol represents the logical conjunction operation, which is equivalent to the word "and.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact