Isomers were quite confusing for early chemists, before atomic theory was widely accepted, and people where thinking mostly in terms of proportions of equations, related: Section "Isomers suggest that atoms exist".
Exist because double bonds don't rotate freely. Have different properties of course, unlike enantiomer.
In three dimensions In position representation, we define it by using the gradient, and so we see that
Appears directly on Schrödinger equation! And in particular in the time-independent Schrödinger equation.
Then you have to understand what each one of those does to the each atomic orbital:
- total angular momentum: determined by the azimuthal quantum number
- angular momentum in one direction ( by convention): determined by the magnetic quantum number
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
Conservation of the square amplitude in the Schrodinger equation by
Ciro Santilli 37 Updated 2025-07-16
It can be derived directly from the Schrödinger equation.
Bibliography:
- That proof also mentions that if the potential
V
is not real, then there is no conservation of probability! Therefore the potential must be real valued!
Contains the full state of the quantum system.
This is in contrast to classical mechanics where e.g. the state of mechanical system is given by two real functions: position and speed.
The wave equation in position representation on the other hand encodes speed in "how fast does the complex phase spin around", and direction in "does it spin clockwise or counterclockwise", as described well at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)". Then once you understand that, it is more compact to just view those graphs with the phase color coded as in Video "Simulation of the time-dependent Schrodinger equation (JavaScript Animation) by Coding Physics (2019)".
Diffraction of Cathode Rays by a Thin Film by Thomson and Reid (1927) by
Ciro Santilli 37 Updated 2025-07-16
TODO, including why the Schrodinger equation is not.
A relativistic version of the Schrödinger equation.
Correctly describes spin 0 particles.
The most memorable version of the equation can be written as shown at Section "Klein-Gordon equation in Einstein notation" with Einstein notation and Planck units:
Has some issues which are solved by the Dirac equation:
- it has a second time derivative of the wave function. Therefore, to solve it we must specify not only the initial value of the wave equation, but also the derivative of the wave equation,As mentioned at Advanced quantum mechanics by Freeman Dyson (1951) and further clarified at: physics.stackexchange.com/questions/340023/cant-the-negative-probabilities-of-klein-gordon-equation-be-avoided, this would lead to negative probabilities.
- the modulus of the wave function is not constant and therefore not always one, and therefore cannot be interpreted as a probability density anymore
- since we are working with the square of the energy, we have both positive and negative value solutions. This is also a features of the Dirac equation however.
Bibliography:
- Video "Quantum Mechanics 12a - Dirac Equation I by ViaScience (2015)" at youtu.be/OCuaBmAzqek?t=600
- An Introduction to QED and QCD by Jeff Forshaw (1997) 1.2 "Relativistic Wave Equations" and 1.4 "The Klein Gordon Equation" gives some key ideas
- 2011 PHYS 485 lecture videos by Roger Moore from the University of Alberta at around 7:30
- www.youtube.com/watch?v=WqoIW85xwoU&list=PL54DF0652B30D99A4&index=65 "L2. The Klein-Gordon Equation" by doctorphys
- sites.ualberta.ca/~gingrich/courses/phys512/node21.html from Advanced quantum mechanics II by Douglas Gingrich (2004)
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact