University by Ciro Santilli 37 Updated 2025-09-09
One major issue is that teachers don't have the right incentive to, nor are selected to, teach well. Thus the existence of Rate My Professors! But we can do better...
Which is why Ciro Santilli wants to destroy its current format with OurBigBook.com. He believes that we can find a more efficient organization to achieve both the social and research functions of university, by first doing as much as possible online
Covariance by Ciro Santilli 37 Updated 2025-07-16
Generally means that he form of the equation does not change if we transform .
This is generally what we want from the laws of physics.
E.g. a Galilean transformation generally changes the exact values of coordinates, but not the form of the laws of physics themselves.
Lorentz covariance is the main context under which the word "covariant" appears, because we really don't want the form of the equations to change under Lorentz transforms, and "covariance" is often used as a synonym of "Lorentz covariance".
TODO some sources distinguish "invariant" from "covariant": invariant vs covariant.
Invariant vs covariant by Ciro Santilli 37 Updated 2025-07-16
Some sources distinguish "invariant" from "covariant" such that under some transformation (typically Lie group):
  • invariant: the value of does not change if we transform
  • covariant: the form of the equation does not change if we transform .
TODO examples.
Lorentz boost by Ciro Santilli 37 Updated 2025-07-16
Two observers travel at fixed speed relative to each other. They synchronize origins at x=0 and t=0, and their spacial axes are perfectly aligned. This is a subset of the Lorentz group. TODO confirm it does not form a subgroup however.
Generalization of orthogonal group to preserve different bilinear forms. Important because the Lorentz group is .
First we can observe that the exact matrices are different. For example, taking the standard matrix of :
and:
both have the same metric signature. However, we notice that a rotation of 90 degrees, which preserves the first form, does not preserve the second one! E.g. consider the vector , then . But after a rotation of 90 degrees, it becomes , and now ! Therefore, we have to search for an isomorphism between the two sets of matrices.
For example, consider the orthogonal group, which can be defined as shown at the orthogonal group is the group of all matrices that preserve the dot product can be defined as:

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact