The finite element method is one of the most common ways to solve PDEs in practice.
Semidirect product Updated 2025-07-16
As per en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965#Properties, unlike the Direct product, the semidirect product of two goups is neither unique, nor does it always exist, and there is no known algorithmic way way to tell if one exists or not.
This is because reaching the "output" of the semidirect produt of two groups requires extra non-obvious information that might not exist. This is because the semi-direct product is based on the product of group subsets. So you start with two small and completely independent groups, and it is not obvious how to join them up, i.e. how to define the group operation of the product group that is compatible with that of the two smaller input groups. Contrast this with the Direct product, where the composition is simple: just use the group operation of each group on either side.
Product of group subsets
So in other words, it is not a function like the Direct product. The semidiret product is therefore more like a property of three groups.
The semidirect product is more general than the direct product of groups when thinking about the group extension problem, because with the direct product of groups, both subgroups of the larger group are necessarily also normal (trivial projection group homomorphism on either side), while for the semidirect product, only one of them does.
Conversely, en.wikipedia.org/w/index.php?title=Semidirect_product&oldid=1040813965 explains that if , and besides the implied requirement that N is normal, H is also normal, then .
Smallest example: where is a dihedral group and are cyclic groups. (the rotation) is a normal subgroup of , but (the flip) is not.
Note that with the Direct product instead we get and not , i.e. as per the direct product of two cyclic groups of coprime order is another cyclic group.
TODO:
SHA-2 Updated 2025-07-16
GNU make Updated 2025-07-16
Uranium-238 Updated 2025-07-16
John Rowell Updated 2025-07-16
Polyhedron Updated 2025-07-16
For those that know biology and just want to do the thing, see: Section "Protocols used".
The PuntSeq team uses an Oxford Nanopore MinION DNA sequencer made by Oxford Nanopore Technologies to sequence the 16S region of bacterial DNA, which is about 1500 nucleotides long.
This kind of "decode everything from the sample to see what species are present approach" is called "metagenomics".
This is how the MinION looks like: Figure 1. "Oxford Nanopore MinION top".
The 16S region codes for one of the RNA pieces that makes the bacterial ribosome.
Before sequencing the DNA, we will do a PCR with primers that fit just before and just after the 16S DNA, in well conserved regions expected to be present in all bacteria.
The PCR replicates only the DNA region between our two selected primers a gazillion times so that only those regions will actually get picked up by the sequencing step in practice.
Eukaryotes also have an analogous ribosome part, the 18S region, but the PCR primers are selected for targets around the 16S region which are only present in prokaryotes.
This way, we amplify only the 16S region of bacteria, excluding other parts of bacterial genome, and excluding eukaryotes entirely.
Despite coding such a fundamental piece of RNA, there is still surprisingly variability in the 16S region across different bacteria, and it is those differences will allow us to identify which bacteria are present in the river.
The variability exists because certain base pairs are not fundamental for the function of the 16S region. This variability happens mostly on RNA loops as opposed to stems, i.e. parts of the RNA that don't base pair with other RNA in the RNA secondary structure as shown at: Code 1. "RNA stem-loop structure".
                A-U
               /   \
A-U-C-G-A-U-C-G     C
| | | | | | | |     |
U-A-G-C-U-A-G-C     G
               \   /
                U-A
|             ||    |
+-------------++----+
    stem        loop
Code 1.
RNA stem-loop structure
.
This is how the 16S RNA secondary structure looks like in its full glory: Figure 5. "16S RNA secondary structure".
Since loops don't base pair, they are less crucial in the determination of the secondary structure of the RNA.
The variability is such that it is possible to identify individual species apart if full sequences are known with certainty.
With the experimental limitations of experiment however, we would only be able to obtain family or genus level breakdowns.
Sandy Maguire Updated 2025-07-16
Lots of similar ideologies to Ciro Santilli, love it:
Other interesting points:
He's a Haskell person.

There are unlisted articles, also show them or only show them.