Quantum electrodynamics Lagrangian Updated 2025-07-16
where:
- is the electromagnetic tensor
Note that this is the sum of the:Note that the relationship between and is not explicit. However, if we knew what type of particle we were talking about, e.g. electron, then the knowledge of psi would also give the charge distribution and therefore
- Dirac Lagrangian, which only describes the "inertia of bodies" part of the equation
- the electromagnetic interaction term , which describes term describes forces
As mentioned at the beginning of Quantum Field Theory lecture notes by David Tong (2007):
- by "Lagrangian" we mean Lagrangian density
- the generalized coordinates of the Lagrangian are fields
Quantum error correction Updated 2025-07-16
Technique that uses multiple non-ideal qubits (physical qubits) to simulate/produce one perfect qubit (logical).
One is philosophically reminded of classical error correction codes, where we also have multiple input bits per actual information bit.
TODO understand in detail. This appears to be a fundamental technique since all physical systems we can manufacture are imperfect.
Part of the fundamental interest of this technique is due to the quantum threshold theorem.
For example, when PsiQuantum raised 215M in 2020, they announced that they intended to reach 1 million physical qubits, which would achieve between 100 and 300 logical qubits.
Video "Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)" youtu.be/7wCBkAQYBZA?t=2778 describes an error correction approach for a photonic quantum computer.
Bibliography:
Quantum field theory lecture by Tobias Osborne (2017) Lecture 1 Updated 2025-07-16
Bibliography review:
- Quantum Field Theory lecture notes by David Tong (2007) is the course basis
- quantum field theory in a nutshell by Anthony Zee (2010) is a good quick and dirty book to start
Course outline given:
- classical field theory
- quantum scalar field. Covers bosons, and is simpler to get intuition about.
- quantum Dirac field. Covers fermions
- interacting fields
- perturbation theory
- renormalization
Non-relativistic QFT is a limit of relativistic QFT, and can be used to describe for example condensed matter physics systems at very low temperature. But it is still very hard to make accurate measurements even in those experiments.
Mentions that "QFT is hard" because (a finite list follows???):But I guess that if you fully understand what that means precisely, QTF won't be too hard for you!
There are no nontrivial finite-dimensional unitary representations of the Poincaré group.
Notably, this is stark contrast with rotation symmetry groups (SO(3)) which appears in space rotations present in non-relativistic quantum mechanics.
www.youtube.com/watch?v=T58H6ofIOpE&t=5097 describes the relativistic particle in a box thought experiment with shrinking walls
Quantum field theory lecture by Tobias Osborne (2017) Lecture 3 Updated 2025-07-16
- symmetry in classical field theory
- from Lagrangian density we can algorithmically get equations of motion, but the Lagrangian density is a more compact way of representing the equations of motion
- definition of symmetry in context: keeps Lagrangian unchanged up to a total derivative
- Noether's theorem
- youtu.be/cj-QpsZsDDY?list=PLDfPUNusx1EpRs-wku83aqYSKfR5fFmfS&t=3062 Lagrangian and conservation example under translations
- youtu.be/cj-QpsZsDDY?list=PLDfPUNusx1EpRs-wku83aqYSKfR5fFmfS&t=3394 same but for Poincaré transformations But now things are harder, because it is harder to describe general infinitesimal Poincare transforms than it was to describe the translations. Using constraints/definition of Lorentz transforms, also constricts the allowed infinitesimal symmetries to 6 independent parameters
- youtu.be/cj-QpsZsDDY?list=PLDfPUNusx1EpRs-wku83aqYSKfR5fFmfS&t=4525 brings out Poisson brackets, and concludes that each conserved current maps to a generator of the Lie algebra
Quantum field theory lecture notes Updated 2025-07-16
Lecture notes found by Googling "quantum field theory pdf":
- www.ppd.stfc.ac.uk/Pages/Dasgupta_08_Intro_to_QFT.pdf "An Introduction to Quantum Field Theory" by Mrinal Dasgupta from the University of Manchester (2008). 48 pages.
- www.thphys.uni-heidelberg.de/~weigand/QFT2-14/SkriptQFT2.pdf "Quantum Field Theory I + II" by Timo Weigand from the Heidelberg University. Unknown year, references up to 2008.
- edu.itp.phys.ethz.ch/hs12/qft1/ Quantum Field Theory 1 by Niklas Beisert
Quantum Field Theory lecture notes by David Tong (2007) Updated 2025-07-16
Number of pages circa 2021: 155.
It should also be noted that those notes are still being updated circa 2020 much after original publication. But without Git to track the LaTeX, it is hard to be sure how much. We'll get there one day, one day.
Some quotes self describing the work:
- Perhaps for this reason Ciro Santilli was not able to get as much as he'd out of those notes either. This is not to say that the notes are bad, just not what Ciro needed, much like P&S:
In this course we will not discuss path integral methods, and focus instead on canonical quantization.
A follow up course in the University of Cambridge seems to be the "Advanced QFT course" (AQFT, Quantum field theory II) by David Skinner: www.damtp.cam.ac.uk/user/dbs26/AQFT.html
Quantum Hall effect Updated 2025-07-16
Quantum version of the Hall effect.
As you increase the magnetic field, you can see the Hall resistance increase, but it does so in discrete steps.
Gotta understand this because the name sounds cool. Maybe also because it is used to define the fucking ampere in the 2019 redefinition of the SI base units.
At least the experiment description itself is easy to understand. The hard part is the physical theory behind.
The effect can be separated into two modes:
- Integer quantum Hall effect: easier to explain from first principles
- Fractional quantum Hall effect: harder to explain from first principles
- Fractional quantum Hall effect for : 1998 Nobel Prize in Physics
- Fractional quantum Hall effect for : one of the most important unsolved physics problems as of 2023
SMIC Updated 2025-07-16
Quantum logic gates are needed because you can't compute the matrix explicitly as it grows exponentially Updated 2025-07-16
One key insight, is that the matrix of a non-trivial quantum circuit is going to be huge, and won't fit into any amount classical memory that can be present in this universe.
This is because the matrix is exponential in the number qubits, and is more than the number of atoms in the universe!
Therefore, off the bat we know that we cannot possibly describe those matrices in an explicit form, but rather must use some kind of shorthand.
But it gets worse.
This is because knowing the matrix, basically means knowing the probability result for all possible outputs for each of the possible inputs.
But if we had those probabilities, our algorithmic problem would already be solved in the first place! We would "just" go over each of those output probabilities (OK, there are of those, which is also an insurmountable problem in itself), and the largest probability would be the answer.
So if we could calculate those probabilities on a classical machine, we would also be able to simulate the quantum computer on the classical machine, and quantum computing would not be able to give exponential speedups, which we know it does.
To see this, consider that for a given input, say and therefore when you multiply it by the unitary matrix of the quantum circuit, what you get is the first column of the unitary matrix of the quantum circuit. And
000 on a 3 qubit machine, the corresponding 8-sized quantum state looks like:000 -> 1000 0000 == (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)001, gives the second column and so on.As a result, to prove that a quantum algorithm is correct, we need to be a bit smarter than "just calculate the full matrix".
Which is why you should now go and read: Section "Quantum algorithm".
This type of thinking links back to how physical experiments relate to quantum computing: a quantum computer realizes a physical experiment to which we cannot calculate the probabilities of outcomes without exponential time.
So for example in the case of a photonic quantum computer, you are not able to calculate from theory the probability that photons will show up on certain wires or not.
Quantum logic gates are needed for physical implementation Updated 2025-07-16
One direct practical reason is that we need to map the matrix to real quantum hardware somehow, and all quantum hardware designs so far and likely in the future are gate-based: you manipulate a small number of qubits at a time (2) and add more and more of such operations.
While there are "quantum compilers" to increase the portability of quantum programs, it is to be expected that programs manually crafted for a specific hardware will be more efficient just like in classic computers.
TODO: is there any clear reason why computers can't beat humans in approximating any unitary matrix with a gate set?
This is analogous to what classic circuit programmers will do, by using smaller logic gates to create complex circuits, rather than directly creating one huge truth table.
The gates themselves are just unitary matrices that operate on the input qubits and produce the same number of output qubits.
For example, the matrix for the CNOT gate, which takes 2 qubits as input is:
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0The final question is then: if I have a 2 qubit gate but an input with more qubits, say 3 qubits, then what does the 2 qubit gate (4x4 matrix) do for the final big 3 qubit matrix (8x8)? In order words, how do we scale quantum gates up to match the total number of qubits?
The intuitive answer is simple: we "just" extend the small matrix with a larger identity matrix so that the sum of the probabilities third bit is unaffected.
More precisely, we likely have to extend the matrix in a way such that the partial measurement of the original small gate qubits leaves all other qubits unaffected.
For example, if the circuit were made up of a CNOT gate operating on the first and second qubits as in:
0 ----+----- 0
|
1 ---CNOT--- 1
2 ---------- 2TODO lazy to properly learn right now. Apparently you have to use the Kronecker product by the identity matrix. Also, zX-calculus appears to provide a powerful alternative method in some/all cases.
Quantum matter physics course of the University of Oxford Updated 2025-07-16
2011- professor: Steven H. Simon. His start date is given e.g. at: www-thphys.physics.ox.ac.uk/people/SteveSimon/condmat2012/LectureNotes2012.pdf which is presumably an older version of: www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2022/QuantumMatter.pdf
Notes/book: www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2022/QuantumMatter.pdf Marked as being for Oxford MMathPhys, so it appears that this is a 4th year course normally. TODO but where is it listed under the course list of MMapthPhys? mmathphys.physics.ox.ac.uk/course-schedule
Course page index: www-thphys.physics.ox.ac.uk/people/SteveSimon/
www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2023/quantummatter.html mentions it is given in Hilary term
2023 syllabus as per www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2023/quantummatter.html#Syllabus:
- Fermi Liquids
- Weakly Interacting Fermions
- Response Functions and Screening
- Thomas Fermi
- RPA
- Plasmons
- Landau Fermi Liquid Theory
- Superfluidity
- Two Fluid Model and Quantized Circulation
- Landau Criterion for Superfluidity
- Two Fluid Model for Superconductors
- London Theory
- Flux Vortices
- Type I and Type II superconductors
- Microscopic Superfluidity
- Coherent States
- Bose Condensation
- Gross Pitaevskii Equation
- Off Diagonal Long Range Order
- Feynman Theory of Superfluidity (in book, but will skip in lectures. Not examinable)
- Ginzburg Landau Theory of Superfluids
- BCS Theory of Superconductors
Quantum Mechanical View of Reality by Richard Feynman (1983) Updated 2025-07-16
Sample playlist: www.youtube.com/playlist?list=PLW_HsOU6YZRkdhFFznHNEfua9NK3deBQy
Basically the same content as: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979), but maybe there is some merit to this talk, as it is a bit more direct in some points. This is consistent with what is mentioned at www.feynman.com/science/qed-lectures-in-new-zealand/ that the Auckland lecture was the first attempt.
Some more information at: iucat.iu.edu/iub/5327621
By Mill Valley, CA based producer "Sound Photosynthesis", some info on their website: sound.photosynthesis.com/Richard_Feynman.html
They are mostly a New Age production company it seems, which highlights Feynman's absolute cult status. E.g. on the last video, he's not wearing shoes, like a proper guru.
Feynman liked to meet all kinds of weird people, and at some point he got interested in the New Age Esalen Institute. Surely You're Joking, Mr. Feynman this kind of experience a bit, there was nude bathing on a pool that oversaw the sea, and a guy offered to give a massage to the he nude girl and the accepted.
youtu.be/rZvgGekvHest=5105 actually talks about spin, notably that the endpoint events also have a spin, and that the transition rules take spin into account by rotating thing, and that the transition rules take spin into account by rotating things.
Real coordinate space of dimension three Updated 2025-07-16
Real-time attack speedrun Updated 2025-07-16
A non-tool-assisted speedrun.
Ciro Santilli views humans as biological robots, and therefore RTA videos can be thought of as probabilistic TAS with human achievable reflex constraints.
This aspect is especially highlighted in "speed run record evolution videos", which can be quite fun, e.g. www.youtube.com/watch?v=pmS9e7kzgS4 Ocarina of Time - World Record History and Progression (Any% Speedrun, 1990s-2017) by retro (2017)
From a similar point of view, Ciro also sometimes watches/learns a bit about competitive PvP games from a "could a computer play this better than a human" point of view.
Ciro also likes to watch commented manual speedruns of games as a way of experiencing the game at a high level without spending too much time on it, often from Games Done Quick. Their format is good because it generally showcases one player focusing more on the gameplay, and three couch commentators to give context, that's a good setup.
It is a
Real time live plot from streaming data Updated 2025-07-16
E.g. showing live data from a scientific instrument! TODO:
- superuser.com/questions/825588/what-is-the-easiest-way-of-visualizing-data-from-stdout-as-a-graph
- unix.stackexchange.com/questions/190337/how-can-i-make-a-graphical-plot-of-a-sequence-of-numbers-from-the-standard-input
- stackoverflow.com/questions/44470965/how-can-you-watch-gnuplot-realtime-data-plots-as-a-live-graph-with-automatic-up
- stackoverflow.com/questions/14074790/plotting-a-string-of-csv-data-in-realtime-using-linux
- stackoverflow.com/questions/11874767/how-do-i-plot-in-real-time-in-a-while-loop-using-matplotlib
Real-time polymerase chain reaction Updated 2025-07-16
Also known as: Quantitative PCR (qPCR).
This describes one possible concentration detection method with fluorescent molecules that only become fluorescent when the DNA is double stranded (SYBR Green)
Polymerase Chain Reaction (PCR) - Quantitative PCR (qPCR) by Applied Biological Materials (2016)
Source. This allows you to predict the exact initial concentration by extrapolating the exponential curve backwards.
Representation theory Updated 2025-07-16
Basically, a "representation" means associating each group element as an invertible matrices, i.e. a matrix in (possibly some subset of) , that has the same properties as the group.
Or in other words, associating to the more abstract notion of a group more concrete objects with which we are familiar (e.g. a matrix).
This is basically what everyone does (or should do!) when starting to study Lie groups: we start looking at matrix Lie groups, which are very concrete.
Or more precisely, mapping each group element to a linear map over some vector field (which can be represented by a matrix infinite dimension), in a way that respects the group operations:
As shown at Physics from Symmetry by Jakob Schwichtenberg (2015)
- page 51, a representation is not unique, we can even use matrices of different dimensions to represent the same group
- 3.6 classifies the representations of . There is only one possibility per dimension!
- 3.7 "The Lorentz Group O(1,3)" mentions that even for a "simple" group such as the Lorentz group, not all representations can be described in terms of matrices, and that we can construct such representations with the help of Lie group theory, and that they have fundamental physical application
Bibliography:
- www.youtube.com/watch?v=9rDzaKASMTM "RT1: Representation Theory Basics" by MathDoctorBob (2011). Too much theory, give me the motivation!
- www.quantamagazine.org/the-useless-perspective-that-transformed-mathematics-20200609 The "Useless" Perspective That Transformed Mathematics by Quanta Magazine (2020). Maybe there is something in there amidst the "the reader might not know what a matrix is" stuff.
Resonance Updated 2025-07-16
Examples:
- mechanical resonance, notably:
- pipe instruments
- electronic oscillators, notably:
- LC oscillator, and notably the lossy version RLC circuit
Perhaps a key insight of resonance is that the reonant any lossy system tends to look like the resonance frequency quite quickly even if the initial condition is not the resonant condition itself, because everything that is not the resonant frequency interferes destructively and becomes noise. Some examples of that:
- striking a bell or drum can be modelled by applying an impuse to the system
- playing a pipe instrument comes down to blowing a piece that vibrates randomly, and then leads the pipe to vibrate mostly in the resonant frequency. Likely the same applies to bowed string instruments, the bow must be creating a random vibration.
- playing a plucked string instrument comes down to initializing the system to an triangular wave form and then letting it evolve. TODO find a simulation of that!
Another cool aspect of resonance is that it was kind of the motivation for de Broglie hypothesis, as de Broglie was kind of thinking that electroncs might show discrete jumps on atomic spectra because of constructive interference.
Richard Feynman's drug use Updated 2025-07-16
From Surely You're Joking, Mr. Feynman chapter O Americano, Outra Vez!:
The people from the airlines were somewhat bored with their lives, strangely enough, and at night they would often go to bars to drink. I liked them all, and in order to be sociable, I would go with them to the bar to have a few drinks, several nights a week.One day, about 3:30 in the afternoon, I was walking along the sidewalk opposite the beach at Copacabana past a bar. I suddenly got this treMENdous, strong feeling: "That's just what I want; that'll fit just right. I'd just love to have a drink right now!"I started to walk into the bar, and I suddenly thought to myself, "Wait a minute! It's the middle of the afternoon. There's nobody here, There's no social reason to drink. Why do you have such a terribly strong feeling that you have to have a drink?" - and I got scared.I never drank ever again, since then. I suppose I really wasn't in any danger, because I found it very easy to stop. But that strong feeling that I didn't understand frightened me. You see, I get such fun out of thinking that I don't want to destroy this most pleasant machine that makes life such a big kick. It's the same reason that, later on, I was reluctant to try experiments with LSD in spite of my curiosity about hallucinations.
One notable drug early teens Ciro consumed was Magic: The Gathering, see also: Section "Magic: The Gathering is addictive".
Riemann hypothesis Updated 2025-07-16
visualizing the Riemann hypothesis and analytic continuation by 3Blue1Brown (2016) is a good quick visual non-mathematical introduction is to it.
One of the Millennium Prize Problems and Hilbert's problems.
There are unlisted articles, also show them or only show them.
