One cool thing we did in this procedure was to use magnetic separation with magnetic beads to further concentrate the DNA: Figure 1. "GE MagRack 6 pipetting.".
The beads are coated to stick to the DNA, which allows us to easily extract the DNA from the rest of the solution. This is cool, but bio people are borderline obsessed by those beads! Go figure!
Figure 1.
GE MagRack 6 pipetting.
Source.
Figure 2.
GE MagRack 6 eppendorf with magnetic beads mounted.
Source.
Here some of the steps required a bit more of vortexing for mixing the reagents, and for this we used the VELP Scientifica WIZARD IR Infrared Vortex Mixer which appears to be quicker to use and not as strong as the Vortex Genie 2 previously used to break up the cells:
Figure 3.
VELP Scientifica WIZARD IR Infrared Vortex Mixer running.
Source.
After all that was done, the DNA of the several 400 ml water bottles and hours of hard purification labour were contained in one single Eppendorf!
Path integral formulation Updated 2025-07-16
This one might actually be understandable! It is what Richard Feynman starts to explain at: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979).
The difficulty is then proving that the total probability remains at 1, and maybe causality is hard too.
The path integral formulation can be seen as a generalization of the double-slit experiment to infinitely many slits.
Feynman first stared working it out for non-relativistic quantum mechanics, with the relativistic goal in mind, and only later on he attained the relativistic goal.
TODO why intuitively did he take that approach? Likely is makes it easier to add special relativity.
This approach more directly suggests the idea that quantum particles take all possible paths.
Path to AGI Updated 2025-07-16
There are two main ways to try and reach AGI:
Which one of them to take is of of the most important technological questions of humanity according to Ciro Santilli
There is also an intermediate area of research/engineering where people try to first simulate the robot and its world realistically, use the simulation for training, and then transfer the simulated training to real robots, see e.g.: realistic robotics simulation.
Pauli-X gate Updated 2025-07-16
The quantum NOT gate swaps the state of and , i.e. it maps:
As a result, this gate also inverts the probability of measuring 0 or 1, e.g.
Equation 2.
Quantum NOT gate matrix
.
Figure 1.
Quantum NOT gate symbol
. Source.
Peptidoglycan Updated 2025-07-16
From the Wikipedia image we can see clearly the polymer structure formed: it is a mesh with:
Figure 1.
Peptidoglycan polymer structure
. Source.
Pernosco Updated 2025-07-16
Proprietary extension to Mozilla rr by rr lead coder Robert O'Callahan et. al, started in 2016 after he quit Mozilla.
Pinto bean Updated 2025-07-16
This seems to be the "brown Brazilian bean" that many Brazilians eat every day.
Edit: after buying it, not 100% sure. This one felt smaller than what Ciro had in Brazil, borlotti beans might be closer. Pinto beans are smaller, and creamier, and have softer peel, possibly produced less natural gas.
2021-04: second try.
2021-03: did for first time, started with same procedure as borlotti beans 2021-03. Maybe 1h30 is too much. Outcome was still very good.
Pipa piece Updated 2025-07-16
TODO identify better:
Video 1.
Posing As a Wind Instrument Player In an Ensemble by Li Xuan
. Source. Part of "Chinese Ancient Music - Vol 2, High Mountains And Flowing Water", e.g. as seen at: www.youtube.com/watch?v=If7ARKoMiKI.
Plancherel theorem Updated 2025-07-16
Some sources say that this is just the part that says that the norm of a function is the same as the norm of its Fourier transform.
Others say that this theorem actually says that the Fourier transform is bijective.
The comment at math.stackexchange.com/questions/446870/bijectiveness-injectiveness-and-surjectiveness-of-fourier-transformation-define/1235725#1235725 may be of interest, it says that the bijection statement is an easy consequence from the norm one, thus the confusion.
PlanetMath Updated 2025-07-16
Joe Corneli, of of the contributors, mentions this in a cool-sounding "Peeragogy" context at metameso.org/~joe/:
I earned my doctorate at The Open University in Milton Keynes, with a thesis focused on peer produced support for peer learning in the mathematics domain. The main case study was planetmath.org; the ideas also informed the development of “Peeragogy”.
You need a secondary password that when used leads to an empty inbox with a setting set where message are deleted after 2 days.
This way, if the attacker sends a test email, it will still show up, but being empty is also plausible.
Of course, this means that any new emails received will be visible by the attacker, so you have to find a way to inform senders that the account has been compromised.
So you have to find a way to inform senders that the account has been compromised, e.g. a secret pre-agreed canary that must be checked each time as part of the contact protocol.
Plutonium Updated 2025-07-16
What a material:
Video 2.
Burning and Extinguishing Characteristics of Plutonium Metal Fires by RobPlonski
. Source. Commented by this dude: www.linkedin.com/in/robplonski/
Pokemon Updated 2025-07-16
One of the main children cartoons Ciro Santilli liked to watch. Part of the Pokemon Mania of the 90s of course.
Ciro could not understand why Nintendo won't make a proper 3D MMORPG Pokemon with actually 3D Pokemon roaming the land, which is obviously what everyone wants. There are even fan games getting there!
until this explaiend it beautifully Video 1. "The Downfall Of Mainline Pokemon Games by GONZ media (2020)":
Figure 1.
Instead of risking anything new, let's play it safe by continuing our slow decline into obsolecense cartoon by Tom Fishburne
. Source.
Video 1.
The Downfall Of Mainline Pokemon Games by GONZ media (2020)
Source. Great video, explains things Ciro had never thought about, e.g. how the Nintendo Switch unified handheld and console for Nintento, this could open the doors for a more ambitious Pokemon release.
Post-quantum cryptography Updated 2025-07-16
Encryption algorithms that run on classical computers that are expected to be resistant to quantum computers.
This is notably not the case of the dominant 2020 algorithms, RSA and elliptic curve cryptography, which are provably broken by Grover's algorithm.
Post-quantum cryptography is the very first quantum computing thing at which people have to put money into.
The reason is that attackers would be able to store captured ciphertext, and then retroactively break them once and if quantum computing power becomes available in the future.
There isn't a shade of a doubt that intelligence agencies are actively doing this as of 2020. They must have a database of how interesting a given source is, and then store as much as they can given some ammount of storage budget they have available.
A good way to explain this to quantum computing skeptics is to ask them:
If I told you there is a 5% chance that I will be able to decrypt everything you write online starting today in 10 years. Would you give me a dollar to reduce that chance to 0.5%?
Post-quantum cryptography is simply not a choice. It must be done now. Even if the risk is low, the cost would be way too great.
Power, performance and area Updated 2025-07-16
This is the mantra of the semiconductor industry:
  • power and area are the main limiting factors of chips, i.e., your budget:
    • chip area is ultra expensive because there are sporadic errors in the fabrication process, and each error in any part of the chip can potentially break the entire chip. Although there are
      The percentage of working chips is called the yield.
      In some cases however, e.g. if the error only affects single CPU of a multi-core CPU, then they actually deactivate the broken CPU after testing, and sell the worse CPU cheaper with a clear branding of that: this is called binning www.tomshardware.com/uk/reviews/glossary-binning-definition,5892.html
    • power is a major semiconductor limit as of 2010's and onwards. If everything turns on at once, the chip would burn. Designs have to account for that.
  • performance is the goal.
    Conceptually, this is basically a set of algorithms that you want your hardware to solve, each one with a respective weight of importance.
    Serial performance is fundamentally limited by the longest path that electrons have to travel in a given clock cycle.
    The way to work around it is to create pipelines, splitting up single operations into multiple smaller operations, and storing intermediate results in memories.

There are unlisted articles, also show them or only show them.