webpack Updated 2025-07-16
Webpack is like a magic hydra that can eat any type of file and bundle it into a single output: .js, .ts, .ccs, .scss, .jsx, .tsx, require, import, import css from .js, it doesn't matter at all, it just digests all into the same dump.
When it works, you are just left in awe and with a single Js file. When it doesn't, you're fucked and have to debug for several hours.
Demos under: webpack/. To run all of them by default:
cd webpack/min
npm install
npm run build
xdg-open index.html
To easily make changes and reload the .js output live let this run on a terminal:
npx webpack watch
Examples:
Website Updated 2025-07-16
TODO find/create decent answer.
I think the best answer is something along:
A basic non-precise intuition is that a good model of reality is that electrons do not "interact with one another directly via the electromagnetic field".
A better model happens to be the quantum field theory view that the electromagnetic field interacts with the photon field but not directly with itself, and then the photon field interacts with parts of the electromagnetic field further away.
The more precise statement is that the photon field is a gauge field of the electromagnetic force under local U(1) symmetry, which is described by a Lie group. TODO understand.
This idea was first applied in general relativity, where Einstein understood that the "force of gravity" can be understood just in terms of symmetry and curvature of space. This was later applied o quantum electrodynamics and the entire Standard Model.
Bibliography:
This was one of the only bad experience Ciro had at Polytechnique, besides the inevitable fear of not graduating.
But the head of the applied mathematics department Polytechnique prevented him from going because Ciro didn't have the necessary grades, even though the Germans had already agreed to it: he had a C, but he needed a B. As mentioned at École Polytechnique, most Brazilians had crappy grades due to their Polytechnique-incompatible background.
This was done because in the past students with bad grades had abandoned their internships halfway and given foreigners a bad impression of Polytechnique.
It is impossible to say if the head of department really agreed with this bullshit policy, or if it was something beyond his powers and he hid his true opinion, but it felt like the agreed.
What an extremely limited view!!!
To leave the worse, the worse. To assume that grades mean anything!
And thus Ciro had to choose a last moment internship that he hated, rather than becoming the greatest roboticist that ever lived, and did terribly at it.
At least on the other hand Ciro learnt Python instead of working at the internship, and became the greatest programming tutorial writer that ever lived. Maybe.
Whole cell simulation Updated 2025-07-16
Ciro Santilli started taking some notes at: github.com/cirosantilli/awesome-whole-cell-simulation. but they are going to be all migrated here.
It is interesting to note how one talks about single cell analysis, in contrast to whole cell simulation: experimentally it is hard to analyse a single cell. But theoretically, it is hard to simulate a single cell. This mismatch is perhaps the ultimate frontier of molecular biology.
Video 1.
A Computational Whole-Cell Model Predicts Genotype From Phenotype by Markus Covert (2013)
Source.
You could put an LED in a cavity with a thin long hole but then, most rays, which are not aligned with the hole, will just bounce inside forever producing heat.
So you would have a very hot device, and very little efficiency on the light output. This heat might also behave like a black-body radiation source, so you would not have a single frequency.
The beauty of lasers is the laser cavity (two parallel mirrors around the medium) selects parallel motion preferentially, see e.g.: youtu.be/_JOchLyNO_w?t=832 from Video "How Lasers Work by Scientized (2017)"
I also believe in publishing null results, so here goes.
Thick cardboard paper and Gorilla Tape: the intense Sun heat made the cardboard bend, and even the Gorilla tape could not hold it, leading to light leakage. Even worse, it started to smell a bit, and I got afraid that it could catch fire, so don't do this! Maybe I will try coating with aluminium foil next time, but I'm afraid it might stick to the glass. In any case, even if those setups work, your room may be permanently very dark depending on how far the window opens, which can lead to other problems such as mold. Another downside of this method is that the tape is extremely sticky, and especially difficult to remove if it touches the glass, where you can't use metallic items to scrape it off without scratching the glass. I had to get a solvent and use a lot of elbow grease to get rid of it.
I have tried a few sleeping masks, but none of them were enough on their own. There is always some light leakage around the nose, especially as you turn around in the night. And some of them are too hot. I have tried:
I also considered getting one of those "Perfect Fit Blinds" www.blindsdirect.co.uk/perfect-fit-roller-blinds (archive) which fit between the glass and the insulation. This looks like it could work. But I didn't go for it in the end because my window has 3 glass panels, so I would have to get three of those blinds separately.
x86 custom instructions Updated 2025-07-16
Intel is known to have created customized chips for very large clients.
This is mentioned e.g. at: www.theregister.com/2021/03/23/google_to_build_server_socs/
Intel is known to do custom-ish cuts of Xeons for big customers.
Those chips are then used only in large scale server deployments of those very large clients. Google is one of them most likely, given their penchant for Google custom hardware.
TODO better sources.
x86 Paging Tutorial Updated 2025-07-19
This tutorial explains the very basics of how paging works, with focus on x86, although most high level concepts will also apply to other instruction set architectures, e.g. ARM.
The goals are to:
  • demonstrate minimal concrete simplified paging examples that will be useful to those learning paging for the first time
  • explain the motivation behind paging
This tutorial was extracted and expanded from this Stack Overflow answer.
64 bits is still too much address for current RAM sizes, so most architectures will use less bits.
x86_64 uses 48 bits (256 TiB), and legacy mode's PAE already allows 52-bit addresses (4 PiB). 56-bits is a likely future candidate.
12 of those 48 bits are already reserved for the offset, which leaves 36 bits.
If a 2 level approach is taken, the best split would be two 18 bit levels.
But that would mean that the page directory would have 2^18 = 256K entries, which would take too much RAM: close to a single-level paging for 32 bit architectures!
Therefore, 64 bit architectures create even further page levels, commonly 3 or 4.
x86_64 uses 4 levels in a 9 | 9 | 9 | 9 scheme, so that the upper level only takes up only 2^9 higher level entries.
The 48 bits are split equally into two disjoint parts:
----------------- FFFFFFFF FFFFFFFF
Top half
----------------- FFFF8000 00000000


Not addressable


----------------- 00007FFF FFFFFFFF
Bottom half
----------------- 00000000 00000000
A 5-level scheme is emerging in 2016: software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf which allows 52-bit addresses with 4k pagetables.
Page directory given to process by the OS:
entry index   entry address      page table address  present
-----------   ----------------   ------------------  --------
0             CR3 + 0      * 4   0x10000             1
1             CR3 + 1      * 4                       0
2             CR3 + 2      * 4   0x80000             1
3             CR3 + 3      * 4                       0
...
2^10-1        CR3 + 2^10-1 * 4                       0
Page tables given to process by the OS at PT1 = 0x10000000 (0x10000 * 4K):
entry index   entry address      page address  present
-----------   ----------------   ------------  -------
0             PT1 + 0      * 4   0x00001       1
1             PT1 + 1      * 4                 0
2             PT1 + 2      * 4   0x0000D       1
...                                  ...
2^10-1        PT1 + 2^10-1 * 4   0x00005       1
Page tables given to process by the OS at PT2 = 0x80000000 (0x80000 * 4K):
entry index   entry address     page address  present
-----------   ---------------   ------------  ------------
0             PT2 + 0     * 4   0x0000A       1
1             PT2 + 1     * 4   0x0000C       1
2             PT2 + 2     * 4                 0
...
2^10-1        PT2 + 0x3FF * 4   0x00003       1
where PT1 and PT2: initial position of page table 1 and page table 2 for process 1 on RAM.
With that setup, the following translations would happen:
linear    10 10 12 split  physical
--------  --------------  ----------
00000001  000 000 001     00001001
00001001  000 001 001     page fault
003FF001  000 3FF 001     00005001
00400000  001 000 000     page fault
00800001  002 000 001     0000A001
00801004  002 001 004     0000C004
00802004  002 002 004     page fault
00B00001  003 000 000     page fault
Let's translate the linear address 0x00801004 step by step:
  • In binary the linear address is:
    0    0    8    0    1    0    0    4
    0000 0000 1000 0000 0001 0000 0000 0100
  • Grouping as 10 | 10 | 12 gives:
    0000000010 0000000001 000000000100
    0x2        0x1        0x4
    which gives:
    page directory entry = 0x2
    page table     entry = 0x1
    offset               = 0x4
    So the hardware looks for entry 2 of the page directory.
  • The page directory table says that the page table is located at 0x80000 * 4K = 0x80000000. This is the first RAM access of the process.
    Since the page table entry is 0x1, the hardware looks at entry 1 of the page table at 0x80000000, which tells it that the physical page is located at address 0x0000C * 4K = 0x0000C000. This is the second RAM access of the process.
  • Finally, the paging hardware adds the offset, and the final address is 0x0000C004.
Page faults occur if either a page directory entry or a page table entry is not present.
The Intel manual gives a picture of this translation process in the image "Linear-Address Translation to a 4-KByte Page using 32-Bit Paging": Figure 1. "x86 page translation process"
Figure 1.
x86 page translation process
.
x86 Paging Tutorial / Application Updated 2025-07-16
Paging makes it easier to compile and run two programs or threads at the same time on a single computer.
For example, when you compile two programs, the compiler does not know if they are going to be running at the same time or not.
So nothing prevents it from using the same RAM address, say, 0x1234, to store a global variable.
And thread stacks, that must be contiguous and keep growing down until they overwrite each other, are an even bigger issue!
But if two programs use the same address and run at the same time, this is obviously going to break them!
Paging solves this problem beautifully by adding one degree of indirection:
(logical) ------------> (physical)
             paging
Where:
  • logical addresses are what userland programs see, e.g. the contents of rsi in mov eax, [rsi].
    They are often called "virtual" addresses as well.
  • physical addresses can be though of the values that go to physical RAM index wires.
    But keep in mind that this is not 100% true because of further indirections such as:
Compilers don't need to worry about other programs: they just use simple logical addresses.
As far as programs are concerned, they think they can use any address between 0 and 4 GiB (2^32, FFFFFFFF) on 32-bit systems.
The OS then sets up paging so that identical logical addresses will go into different physical addresses and not overwrite each other.
This makes it much simpler to compile programs and run them at the same time.
Paging achieves that goal, and in addition:
  • the switch between programs is very fast, because it is implemented by hardware
  • the memory of both programs can grow and shrink as needed without too much fragmentation
  • one program can never access the memory of another program, even if it wanted to.
    This is good both for security, and to prevent bugs in one program from crashing other programs.
Or if you like non-funny jokes:
Figure 1.
Comparison between the Linux kernel userland memory virtualization and The Matrix
. Source. Is this RAM real?
x86 Paging Tutorial / CAM Updated 2025-07-16
Using the TLB makes translation faster, because the initial translation takes one access per TLB level, which means 2 on a simple 32 bit scheme, but 3 or 4 on 64 bit architectures.
The TLB is usually implemented as an expensive type of RAM called content-addressable memory (CAM). CAM implements an associative map on hardware, that is, a structure that given a key (linear address), retrieves a value.
Mappings could also be implemented on RAM addresses, but CAM mappings may required much less entries than a RAM mapping.
For example, a map in which:
  • both keys and values have 20 bits (the case of a simple paging schemes)
  • at most 4 values need to be stored at each time
could be stored in a TLB with 4 entries:
linear  physical
------  --------
00000   00001
00001   00010
00010   00011
FFFFF   00000
However, to implement this with RAM, it would be necessary to have 2^20 addresses:
linear  physical
------  --------
00000   00001
00001   00010
00010   00011
... (from 00011 to FFFFE)
FFFFF   00000
which would be even more expensive than using a TLB.
Paging is implemented by the CPU hardware itself.
Paging could be implemented in software, but that would be too slow, because every single RAM memory access uses it!
Operating systems must setup and control paging by communicating to the CPU hardware. This is done mostly via:
Processes can however make requests to the OS that cause the page tables to be modified, notably:
The kernel then decides if the request will be granted or not in a controlled manner.
x86's multi-level paging scheme uses a 2 level K-ary tree with 2^10 bits on each level.
Addresses are now split as:
| directory (10 bits) | table (10 bits) | offset (12 bits) |
Then:
  • the top 10 bits are used to walk the top level of the K-ary tree (level0)
    The top table is called a "directory of page tables".
    cr3 now points to the location on RAM of the page directory of the current process instead of page tables.
    Page directory entries are very similar to page table entries except that they point to the physical addresses of page tables instead of physical addresses of pages.
    Each directory entry also takes up 4 bytes, just like page entries, so that makes 4 KiB per process minimum.
    Page directory entries also contain a valid flag: if invalid, the OS does not allocate a page table for that entry, and saves memory.
    Each process has one and only one page directory associated to it (and pointed to by cr3), so it will contain at least 2^10 = 1K page directory entries, much better than the minimum 1M entries required on a single-level scheme.
  • the next 10 bits are used to walk the second level of the K-ary tree (level1)
    Second level entries are also called page tables like the single level scheme.
    Page tables are only allocated only as needed by the OS.
    Each page table has only 2^10 = 1K page table entries instead of 2^20 for the single paging scheme.
    Each process can now have up to 2^10 page tables instead of 2^20 for the single paging scheme.
  • the offset is again not used for translation, it only gives the offset within a page
One reason for using 10 bits on the first two levels (and not, say, 12 | 8 | 12 ) is that each Page Table entry is 4 bytes long. Then the 2^10 entries of Page directories and Page Tables will fit nicely into 4Kb pages. This means that it faster and simpler to allocate and deallocate pages for that purpose.
The Linux kernel makes extensive usage of the paging features of x86 to allow fast process switches with small data fragmentation.
There are also however some features that the Linux kernel might not use, either because they are only for backwards compatibility, or because the Linux devs didn't feel it was worth it yet.

Unlisted articles are being shown, click here to show only listed articles.