Ampere in the 2019 redefinition of the SI base units Updated +Created
Starting in the 2019 redefinition of the SI base units, the elementary charge is assigned a fixed number, and the Ampere is based on it and on the second, which is beautiful.
This choice is not because we attempt to count individual electrons going through a wire, as it would be far too many to count!
Rather, it is because because there are two crazy quantum mechanical effects that give us macroscopic measures that are directly related to the electron charge. www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that the two effects are:
Those effect work because they also involve dividing by the Planck constant, the fundamental constant of quantum mechanics, which is also tiny, and thus brings values into a much more measurable order of size.
Hall effect Updated +Created
The voltage changes perpendicular to the current when magnetic field is applied.
Figure 1.
Hall effect experimental diagram
. Source. The Hall effect refers to the produced voltage , AKA on this setup.
An intuitive video is:
The key formula for it is:
where:
Applications:
  • the direction of the effect proves that electric currents in common electrical conductors are made up of negative charged particles
  • measure magnetic fields, TODO vs other methods
Other more precise non-classical versions:
Hall resistance Updated +Created
In some contexts, we want to observe what happens for a given fixed magnetic field strength on a specific plate (thus and are also fixed).
In those cases, it can be useful to talk about the "Hall resistance" defined as:
So note that it is not a "regular resistance", it just has the same dimensions, and is more usefully understood as a proportionality constant for the voltage given an input current:
This notion can be useful because everything else being equal, if we increase the current , then also increases proportionally, making this a way to talk about the voltage in a current independent manner.
And this is particularly the case for the quantum Hall effect, where is constant for wide ranges of applied magnetic field and TODO presumably the height can be made to a single molecular layer with chemical vapor deposition of the like, and if therefore fixed.
Kibble balance Updated +Created
The Kibble balance is so precise and reproducible that it was responsible for the 2019 redefinition of the Kilogram.
Figure 1.
NIST-4 Kibble balance
. Source.
It relies rely on not one, but three macroscopic quantum mechanical effects:
How cool is that! As usual, the advantage of those effects is that they are discrete, and have very fixed values that don't depend either:
  • on the physical dimensions of any apparatus (otherwise fabrication precision would be an issue)
  • small variations of temperature, magnetic field and so on
One downside of using some quantum mechanical effects is that you have to cool everything down to 5K. But that's OK, we've got liquid helium!
The operating principle is something along:
Then, based on all this, you can determine how much the object weights.
Video 1.
How We're Redefining the kg by Veritasium
. Source.
Video 2.
The Kibble Balance, realizing the Kilogram from fundamental constants of nature by Richard Green
. Source. Presented in 2022 for a CENAM seminar, the Mexican metrology institute. The speaker is from the Canadian metrology institute
Video 3.
The Watt balance and redefining the kilogram by National Physical Laboratory
. Source. Nothing much, but fun to hear Kibble talking about his balance in beautiful English before he passed.
Quantum Hall effect Updated +Created
Quantum version of the Hall effect.
As you increase the magnetic field, you can see the Hall resistance increase, but it does so in discrete steps.
Figure 1.
Hall resistance as a function of the applied magnetic field showing the Quantum Hall effect
. Source. As we can see, the blue line of the Hall resistance TODO material, temperature, etc. It is unclear if this is just
Gotta understand this because the name sounds cool. Maybe also because it is used to define the fucking ampere in the 2019 redefinition of the SI base units.
At least the experiment description itself is easy to understand. The hard part is the physical theory behind.
The effect can be separated into two modes:
Video 1.
Integer and fractional quantum Hall effects by Matthew A. Grayson
. Source. Presented 2015. This dude did good.
System of units Updated +Created
The key thing in a good system of units is to define units in a way that depends only on physical properties of nature.
Ideally (or basically necessarily?) the starting point generally has to be discrete phenomena, e.g.
What we don't want is to have macroscopic measurement artifacts, (or even worse, the size of body parts! Inset dick joke) as you can always make a bar slightly more or less wide. And even metals evaporate over time! Though the mad people of the Avogadro project still attempted otherwise well into the 2010s!
Standards of measure that don't depend on artifacts are known as intrinsic standards.
Videos of all key physics experiments Updated +Created
It is unbelievable that you can't find easily on YouTube recreations of many of the key physics/chemistry experiments and of common laboratory techniques.
Experiments, the techniques required to to them, and the history of how they were first achieved, are the heart of the natural sciences. Without them, there is no motivation, no beauty, no nothing.
School gives too much emphasis on the formulas. This is bad. Much more important is to understand how the experiments are done in greater detail.
The videos must be completely reproducible, indicating the exact model of every experimental element used, and how the experiment is setup.
A bit like what Ciro Santilli does in his Stack Overflow contributions but with computers, by indicating precise versions of his operating system, software stack, and hardware whenever they may matter.
It is understandable that some experiments are just to complex and expensive to re-create. As an extreme example, say, a precise description of the Large Hadron Collider anyone? But experiments up to the mid-20th century before "big science"? We should have all of those nailed down.
We should strive to achieve the cheapest most reproducible setup possible with currently available materials: recreating the original historic setup is cute, but not a priority.
Furthermore, it is also desirable to reproduce the original setups whenever possible in addition to having the most convenient modern setup.
Lists of good experiments to cover be found at: the most important physics experiments.
This project is to a large extent a political endeavour.
Someone with enough access to labs has to step up and make a name for themselves through the huge effort of creating a baseline of amazing content without yet being famous.
Until it reaches a point that this person is actively sought to create new material for others, and things snowball out of control. Maybe, if the Gods allow it, that person could be Ciro.
Tutorials with a gazillion photos and short videos are also equally good or even better than videos, see for example Ciro's How to use an Oxford Nanopore MinION to extract DNA from river water and determine which bacteria live in its for an example that goes toward that level of perfection.
The Applied Science does well in that direction.
This project is one step that could be taken towards improving the replication crisis of science. It's a bit what Hackster.io wants to do really. But that website is useless, just use OurBigBook.com and create videos instead :-)
We're maintaining a list of experiments for which we could not find decent videos at: Section "Physics experiment without a decent modern video".
Ciro Santilli visited the teaching labs of a large European university in the early 2020's. They had a few large rooms filled with mostly ready to run versions of several key experiments, many/most from "modern physics", e.g. Stern-Gerlach experiment, Quantum Hall effect, etc.. These included booklets with detailed descriptions of how to operate the apparatus, what you'd expect to see, and the theory behind them. With a fat copyright notice at the bottom. If only such universities aimed to actually serve the public for free rather than hoarding resources to get more tuition fees, university level education would already have been solved a long time ago!
One thing we can more or less easily do is to search for existing freely licensed videos and add them to the corresponding Wikipedia page where missing. This requires knowing how to search for freely licensed videos: