Good packaging! Tested on Ubuntu 22.10:
This throws a billion exceptions because we didn't start the visdom server, but never mind that.
git clone https://github.com/activatedgeek/LeNet-5
cd LeNet-5
git checkout 95b55a838f9d90536fd3b303cede12cf8b5da47f
virtualenv -p python3 .venv
. .venv/bin/activate
# Their requirements.txt uses >= and some == are incompatible with our Ubuntu.
pip install
Pillow==6.2.0 \
numpy==1.24.2 \
onnx==1.13.1 \
torch==2.0.0 \
torchvision==0.15.1 \
visdom==0.2.4 \
;
time python run.py
The scrip does a fixed 15 epochs.
Output on P51:
real 2m10.262s
user 11m9.771s
sys 0m26.368s
The run also produces a
lenet.onnx
ONNX file, which is pretty neat, and allows us for example to visualize it on Netron:Note that the images must be drawn with white on black. If you use black on white, it the accuracy becomes terrible. This is a good very example of brittleness in AI systems!
We can try the code adapted from thenewstack.io/tutorial-using-a-pre-trained-onnx-model-for-inferencing/ at python/onnx_cheat/infer_mnist.py:
and it works pretty well! The protram outputs:
as desired.
cd python/onnx_cheat
./infer_mnist.py lenet.onnx infer_mnist_9.png
9
We can also try with images directly from Extract MNIST images.
and the accuracy is great as expected.
for f in /home/ciro/git/mnist_png/out/testing/1/*.png; do echo $f; infer.py $f ; done
By default, the setup runs on CPU only, not GPU, as could be seen by running htop. But by the magic of PyTorch, modifying the program to run on the GPU is trivial:
and leads to a faster runtime, with less
cat << EOF | patch
diff --git a/run.py b/run.py
index 104d363..20072d1 100644
--- a/run.py
+++ b/run.py
@@ -24,7 +24,8 @@ data_test = MNIST('./data/mnist',
data_train_loader = DataLoader(data_train, batch_size=256, shuffle=True, num_workers=8)
data_test_loader = DataLoader(data_test, batch_size=1024, num_workers=8)
-net = LeNet5()
+device = 'cuda'
+net = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=2e-3)
@@ -43,6 +44,8 @@ def train(epoch):
net.train()
loss_list, batch_list = [], []
for i, (images, labels) in enumerate(data_train_loader):
+ labels = labels.to(device)
+ images = images.to(device)
optimizer.zero_grad()
output = net(images)
@@ -71,6 +74,8 @@ def test():
total_correct = 0
avg_loss = 0.0
for i, (images, labels) in enumerate(data_test_loader):
+ labels = labels.to(device)
+ images = images.to(device)
output = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.detach().max(1)[1]
@@ -84,7 +89,7 @@ def train_and_test(epoch):
train(epoch)
test()
- dummy_input = torch.randn(1, 1, 32, 32, requires_grad=True)
+ dummy_input = torch.randn(1, 1, 32, 32, requires_grad=True).to(device)
torch.onnx.export(net, dummy_input, "lenet.onnx")
onnx_model = onnx.load("lenet.onnx")
EOF
user
as now we are spending more time on the GPU than CPU:
real 1m27.829s
user 4m37.266s
sys 0m27.562s
Interesting layer skip architecture thing.
Apparently destroyed ImageNet 2015 and became very very famous as such.
catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch explains:
The difference between v1 and v1.5 is that, in the bottleneck blocks which requires downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution.This difference makes ResNet50 v1.5 slightly more accurate (~0.5% top1) than v1, but comes with a smallperformance drawback (~5% imgs/sec).
CNN convolution kernels are not hardcoded. They are learnt and optimized via backpropagation. You just specify their size! Example in PyTorch you'd do just:
as used for example at: activatedgeek/LeNet-5.
nn.Conv2d(1, 6, kernel_size=(5, 5))
This can also be inferred from: stackoverflow.com/questions/55594969/how-to-visualise-filters-in-a-cnn-with-pytorch where we see that the kernels are not perfectly regular as you'd expected from something hand coded.
Object detection model.
You can get some really sweet pre-trained versions of this, typically trained on the COCO dataset.
Deep learning is the name artificial neural networks basically converged to in the 2010s/2020s.
It is a bit of an unfortunate as it suggests something like "deep understanding" and even reminds one of AGI, which it almost certainly will not attain on its own. But at least it sounds good.
mlcommons.org/en/ Their homepage is not amazingly organized, but it does the job.
Benchmark focused on deep learning. It has two parts:Furthermore, a specific network model is specified for each benchmark in the closed category: so it goes beyond just specifying the dataset.
Results can be seen e.g. at:
- training: mlcommons.org/en/training-normal-21/
- inference: mlcommons.org/en/inference-datacenter-21/
And there are also separate repositories for each:
E.g. on mlcommons.org/en/training-normal-21/ we can see what the the benchmarks are:
Dataset | Model |
---|---|
ImageNet | ResNet |
KiTS19 | 3D U-Net |
OpenImages | RetinaNet |
COCO dataset | Mask R-CNN |
LibriSpeech | RNN-T |
Wikipedia | BERT |
1TB Clickthrough | DLRM |
Go | MiniGo |
Instructions at:
Ubuntu 22.10 setup with tiny dummy manually generated ImageNet and run on ONNX:
sudo apt install pybind11-dev
git clone https://github.com/mlcommons/inference
cd inference
git checkout v2.1
virtualenv -p python3 .venv
. .venv/bin/activate
pip install numpy==1.24.2 pycocotools==2.0.6 onnxruntime==1.14.1 opencv-python==4.7.0.72 torch==1.13.1
cd loadgen
CFLAGS="-std=c++14" python setup.py develop
cd -
cd vision/classification_and_detection
python setup.py develop
wget -q https://zenodo.org/record/3157894/files/mobilenet_v1_1.0_224.onnx
export MODEL_DIR="$(pwd)"
export EXTRA_OPS='--time 10 --max-latency 0.2'
tools/make_fake_imagenet.sh
DATA_DIR="$(pwd)/fake_imagenet" ./run_local.sh onnxruntime mobilenet cpu --accuracy
Last line of output on P51, which appears to contain the benchmark results
where presumably
TestScenario.SingleStream qps=58.85, mean=0.0138, time=0.136, acc=62.500%, queries=8, tiles=50.0:0.0129,80.0:0.0137,90.0:0.0155,95.0:0.0171,99.0:0.0184,99.9:0.0187
qps
means queries per second, and is the main results we are interested in, the more the better.Running:
produces a tiny ImageNet subset with 8 images under
tools/make_fake_imagenet.sh
fake_imagenet/
.fake_imagenet/val_map.txt
contains:
val/800px-Porsche_991_silver_IAA.jpg 817
val/512px-Cacatua_moluccensis_-Cincinnati_Zoo-8a.jpg 89
val/800px-Sardinian_Warbler.jpg 13
val/800px-7weeks_old.JPG 207
val/800px-20180630_Tesla_Model_S_70D_2015_midnight_blue_left_front.jpg 817
val/800px-Welsh_Springer_Spaniel.jpg 156
val/800px-Jammlich_crop.jpg 233
val/782px-Pumiforme.JPG 285
- 817: 'sports car, sport car',
- 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
TODO prepare and test on the actual ImageNet validation set, README says:
Prepare the imagenet dataset to come.
Since that one is undocumented, let's try the COCO dataset instead, which uses COCO 2017 and is also a bit smaller. Note that his is not part of MLperf anymore since v2.1, only ImageNet and open images are used. But still:
wget https://zenodo.org/record/4735652/files/ssd_mobilenet_v1_coco_2018_01_28.onnx
DATA_DIR_BASE=/mnt/data/coco
export DATA_DIR="${DATADIR_BASE}/val2017-300"
mkdir -p "$DATA_DIR_BASE"
cd "$DATA_DIR_BASE"
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip val2017.zip
unzip annotations_trainval2017.zip
mv annotations val2017
cd -
cd "$(git-toplevel)"
python tools/upscale_coco/upscale_coco.py --inputs "$DATA_DIR_BASE" --outputs "$DATA_DIR" --size 300 300 --format png
cd -
Now:
fails immediately with:
The more plausible looking:
first takes a while to preprocess something most likely, which it does only one, and then fails:
./run_local.sh onnxruntime mobilenet cpu --accuracy
No such file or directory: '/path/to/coco/val2017-300/val_map.txt
./run_local.sh onnxruntime mobilenet cpu --accuracy --dataset coco-300
Traceback (most recent call last):
File "/home/ciro/git/inference/vision/classification_and_detection/python/main.py", line 596, in <module>
main()
File "/home/ciro/git/inference/vision/classification_and_detection/python/main.py", line 468, in main
ds = wanted_dataset(data_path=args.dataset_path,
File "/home/ciro/git/inference/vision/classification_and_detection/python/coco.py", line 115, in __init__
self.label_list = np.array(self.label_list)
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 2 dimensions. The detected shape was (5000, 2) + inhomogeneous part.
TODO!
Let's run on this Imagenet10 subset, Imagenette.
First ensure that you get the dummy test data run working as per MLperf v2.1 ResNet.
Next, in the
and then let's create the
then back on the mlperf directory we download our model:
and finally run!
which gives on P51:
where
The
imagenette2
directory, first let's create a 224x224 scaled version of the inputs as required by the benchmark at mlcommons.org/en/inference-datacenter-21/:
#!/usr/bin/env bash
rm -rf val224x224
mkdir -p val224x224
for syndir in val/*: do
syn="$(dirname $syndir)"
for img in "$syndir"/*; do
convert "$img" -resize 224x224 "val224x224/$syn/$(basename "$img")"
done
done
val_map.txt
file to match the format expected by MLPerf:
#!/usr/bin/env bash
wget https://gist.githubusercontent.com/aaronpolhamus/964a4411c0906315deb9f4a3723aac57/raw/aa66dd9dbf6b56649fa3fab83659b2acbf3cbfd1/map_clsloc.txt
i=0
rm -f val_map.txt
while IFS="" read -r p || [ -n "$p" ]; do
synset="$(printf '%s\n' "$p" | cut -d ' ' -f1)"
if [ -d "val224x224/$synset" ]; then
for f in "val224x224/$synset/"*; do
echo "$f $i" >> val_map.txt
done
fi
i=$((i + 1))
done < <( sort map_clsloc.txt )
wget https://zenodo.org/record/4735647/files/resnet50_v1.onnx
DATA_DIR=/mnt/sda3/data/imagenet/imagenette2 time ./run_local.sh onnxruntime resnet50 cpu --accuracy
TestScenario.SingleStream qps=164.06, mean=0.0267, time=23.924, acc=87.134%, queries=3925, tiles=50.0:0.0264,80.0:0.0275,90.0:0.0287,95.0:0.0306,99.0:0.0401,99.9:0.0464
qps
presumably means "querries per second". And the time
results:
446.78user 33.97system 2:47.51elapsed 286%CPU (0avgtext+0avgdata 964728maxresident)k
time=23.924
is much smaller than the time
executable because of some lengthy pre-loading (TODO not sure what that means) that gets done every time:
INFO:imagenet:loaded 3925 images, cache=0, took=52.6sec
INFO:main:starting TestScenario.SingleStream
Let's try on the GPU now:
which gives:
TODO lower
DATA_DIR=/mnt/sda3/data/imagenet/imagenette2 time ./run_local.sh onnxruntime resnet50 gpu --accuracy
TestScenario.SingleStream qps=130.91, mean=0.0287, time=29.983, acc=90.395%, queries=3925, tiles=50.0:0.0265,80.0:0.0285,90.0:0.0405,95.0:0.0425,99.0:0.0490,99.9:0.0512
455.00user 4.96system 1:59.43elapsed 385%CPU (0avgtext+0avgdata 975080maxresident)k
qps
on GPU!Notably, convolution can be implemented in terms of GEMM:
The most important thing this project provides appears to be the
.onnx
file format, which represents ANN models, pre-trained or not.Deep learning frameworks can then output such
.onnx
files for interchangeability and serialization.Some examples:
- activatedgeek/LeNet-5 produces a trained
.onnx
from PyTorch - MLperf v2.1 ResNet can use
.onnx
as a pre-trained model
ONNX visualizer.
Matrix multiplication example.
Fundamental since deep learning is mostly matrix multiplication.
NumPy does not automatically use the GPU for it: stackoverflow.com/questions/49605231/does-numpy-automatically-detect-and-use-gpu, and PyTorch is one of the most notable compatible implementations, as it uses the same memory structure as NumPy arrays.
Sample runs on P51 to observe the GPU speedup:
$ time ./matmul.py g 10000 1000 10000 100
real 0m22.980s
user 0m22.679s
sys 0m1.129s
$ time ./matmul.py c 10000 1000 10000 100
real 1m9.924s
user 4m16.213s
sys 0m17.293s
Contains several computer vision models, e.g. ResNet, all of them including pre-trained versions on some dataset, which is quite sweet.
Documentation: pytorch.org/vision/stable/index.html
pytorch.org/vision/0.13/models.html has a minimal runnable example adapted to python/pytorch/resnet_demo.py.
That example uses a ResNet pre-trained on the COCO dataset to do some inference, tested on Ubuntu 22.10:
This first downloads the model, which is currently 167 MB.
cd python/pytorch
wget -O resnet_demo_in.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Rooster_portrait2.jpg/400px-Rooster_portrait2.jpg
./resnet_demo.py resnet_demo_in.jpg resnet_demo_out.jpg
We know it is COCO because of the docs: pytorch.org/vision/0.13/models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn_v2.html which explains that
is an alias for:
FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1
The runtime is relatively slow on P51, about 4.7s.
After it finishes, the program prints the recognized classes:
so we get the expected
['bird', 'banana']
bird
, but also the more intriguing banana
.By looking at the output image with bounding boxes, we understand where the banana came from!
Version of TensorFlow with a Cirq backend that can run in either quantum computers or classical computer simulations, with the goal of potentially speeding up deep learning applications on a quantum computer some day.