Ethos is a rhetorical appeal that refers to the credibility, character, or ethical appeal of the speaker or writer. It is one of the three modes of persuasion identified by Aristotle, alongside pathos (appeal to emotion) and logos (appeal to logic and reason). Ethos is used to establish trust and authority, persuading an audience by demonstrating that the speaker or writer is knowledgeable, trustworthy, and has the moral integrity to speak on the subject at hand.
Circular symmetry, often referred to as radial symmetry, is a type of symmetry where an object or shape appears the same when rotated around a central point. In other words, if you were to rotate the object through any angle about that central point, it would look unchanged. In the context of two-dimensional shapes, examples of circular symmetry include circles, wheels, and starfish. In three dimensions, objects like spheres and some types of flower arrangements exhibit circular symmetry.
The crystal system is a classification of crystals based on their internal symmetry and geometric arrangement. In crystallography, scientists categorize crystals into seven distinct systems according to their unit cells—the smallest repeating unit that reflects the symmetry and structure of the entire crystal. The seven crystal systems are: 1. **Cubical (or Isometric)**: Characterized by three equal axes at right angles to each other. Example: salt (sodium chloride).
The term "Einstein Group" doesn't refer to a widely recognized concept in academia or other fields as of my last update in October 2023. However, it could relate to several different contexts depending on what you're referencing: 1. **Scientific Community**: It might refer to a group of physicists or researchers who focus on topics related to Einstein's theories, especially in the realms of relativity or quantum mechanics.
Facial symmetry refers to the degree to which one side of a person's face is a mirror image of the other side. In a perfectly symmetrical face, corresponding features (such as eyes, eyebrows, lips, and jawline) match in size, shape, and position on both sides. However, most human faces are not perfectly symmetrical; slight asymmetries are common and can even contribute to an individual's uniqueness and attractiveness.
A list of space groups refers to a classification of the symmetrical arrangements in three-dimensional space that describe how atoms are organized in crystals. These groups are essential in the field of crystallography and solid-state physics because they provide a systematic way to categorize and understand the symmetry properties of crystalline materials. Space groups combine the concepts of point groups and translation operations.
Geometric transformation refers to the process of altering the position, size, orientation, or shape of geometric figures or objects in a coordinate system. It is commonly used in various fields such as computer graphics, image processing, and robotics. There are several types of geometric transformations, which can typically be categorized into the following main types: 1. **Translation**: Moving a figure from one location to another without changing its shape or orientation.
The Higgs sector refers to the part of the Standard Model of particle physics that describes the Higgs boson and the associated mechanisms that give mass to elementary particles. It plays a crucial role in explaining how particles acquire mass through the Higgs mechanism, which involves spontaneous symmetry breaking. Here's a breakdown of the key components of the Higgs sector: 1. **Higgs Field**: The Higgs sector is based on a scalar field known as the Higgs field, which permeates the universe.
Isometry is a concept in mathematics and geometry that refers to a transformation that preserves distances between points. In other words, an isometric transformation or mapping maintains the original size and shape of geometric figures, meaning the distances between any two points remain unchanged after the transformation. There are several types of isometric transformations, which include: 1. **Translations**: Moving every point of a figure the same distance in a specified direction.
Finite spherical symmetry groups are groups of rotations (and potentially reflections) that preserve the structure of a finite set of points on a sphere. These groups are closely related to the symmetries of polyhedra and can be understood in the context of group theory and geometry. Here are some of the main finite spherical symmetry groups: 1. **Cyclic Groups (C_n)**: These groups represent the symmetry of an n-sided regular polygon and have order n.
Lorentz covariance is a fundamental principle in the theory of relativity that describes how the laws of physics remain invariant under Lorentz transformations, which relate the coordinates of events as observed in different inertial reference frames moving at constant velocities relative to each other. In more detail, Lorentz transformations include combinations of rotations and boosts (changes in velocity) that preserve the spacetime interval between events.
The Murnaghan–Nakayama rule is a tool used in representation theory, specifically in the context of symmetric functions and the study of representations of the symmetric group. This rule provides a method for calculating the characters of the symmetric group when restricted to certain subgroups, particularly the Young subgroups.
The Poincaré group is a fundamental algebraic structure in the field of theoretical physics, particularly in the context of special relativity and quantum field theory. It describes the symmetries of spacetime in four dimensions and serves as the group of isometries for Minkowski spacetime. The group includes the following transformations: 1. **Translations**: These are shifts in space and time.
Schoenflies notation is a system used in chemistry and molecular biology to describe the symmetry of molecules and molecular structures, particularly in the context of point groups in three-dimensional space. It provides a way to classify the symmetry of a molecule based on its geometric arrangements and symmetries. In Schoenflies notation, point groups are denoted by symbols that often consist of letters and numbers.
Foot per second squared (ft/s²) is a unit of acceleration in the imperial system. It describes the rate of change of velocity of an object in terms of feet traveled per second for each second of time. In other words, if an object's velocity increases by a certain amount of feet per second over the course of one second, this increase in velocity is quantified in feet per second squared.
In mathematics, symmetry refers to a property where a shape or object remains invariant or unchanged under certain transformations. These transformations can include operations such as reflection, rotation, translation, and scaling. Essentially, if you can perform a transformation on an object and it still looks the same, the object is said to possess symmetry.
The symmetry number of a molecular species is a quantitative measure of the extent to which the molecule possesses symmetry. Specifically, the symmetry number is defined as the number of ways a molecule can be rotated or otherwise transformed in space such that it appears indistinguishable from its original form. This concept is important in various fields, including chemistry and molecular physics, as it relates to the statistical mechanics of molecules and their interactions.
"The Ambidextrous Universe" is a book written by physicist Robert Gilmore, published in 1992. The book explores the concept of symmetry in physics, particularly the idea of parity—a property describing how physical phenomena behave under spatial inversion. One of the central themes of the book is the idea that the universe can be seen as having both a "left-handed" and a "right-handed" aspect, reflecting the symmetry properties of physical laws.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact