Isidor Isaac Rabi by Ciro Santilli 35 Updated +Created
He was a leading figure at the MIT Radiation Laboratory, and later he was head at the Columbia University laboratory that carried out the crucial Lamb-Retherford experiment and the anomalous magnetic dipole moment of the electron published at The Magnetic Moment of the Electron by Kusch and Foley (1948) using related techniques.
Natural logarithm by Ciro Santilli 35 Updated +Created
Angular momentum operator by Ciro Santilli 35 Updated +Created
Basically the operators are just analogous to the classical ones e.g. the classical:
becomes:
Besides the angular momentum in each direction, we also have the total angular momentum:
Then you have to understand what each one of those does to the each atomic orbital:
There is an uncertainty principle between the x, y and z angular momentums, we can only measure one of them with certainty at a time. Video 1. "Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)" justifies this intuitively by mentioning that this is analogous to precession: if you try to measure electrons e.g. with the Zeeman effect the precess on the other directions which you end up modifing.
TODO experiment. Likely Zeeman effect.
Video 1.
Quantum Mechanics 7a - Angular Momentum I by ViaScience (2013)
Source.
Feynman was a huge womanizer during a certain period of his life by Ciro Santilli 35 Updated +Created
Feynman became a terrible womanizer after his first wife Arline Greenbaum died, involving himself with several married women, and leading to at least two abortions according to Genius: Richard Feynman and Modern Physics by James Gleick (1994).
Ciro Santilli likes to think that he is quite liberal and not a strict follower of Christian morals, but this one shocked him slightly even. Feynman could be a God, but he could also be a dick sometimes.
One particular case that stuck to Ciro Santilli's mind, partly because he is Brazilian, is when Feynman was in Brazil, he had a girlfriend called Clotilde that called him "Ricardinho", which means "Little Richard"; -inho is a diminutive suffix in Portuguese, and also indicates affection. At some point he even promised to take her back to the United States, but didn't in the end, and instead came back and married his second wife in marriage that soon failed.
Richard's third and final wife, Gweneth Howarth, seemed a good match for him though. When they started courting, she made it very clear that Feynman should decide if he wanted her or not soon, because she had other options available and being actively tested. Fight fire with fire.
Drosophila connectome by Ciro Santilli 35 Updated +Created
The hard part then is how to make any predictions from it:
  • 2024 www.nature.com/articles/d41586-024-02935-z Fly-brain connectome helps to make predictions about neural activity. Summary of "Connectome-constrained networks predict neural activity across the fly visual system" by J. K. Lappalainen et. al.
2024: www.nature.com/articles/d41586-024-03190-y Largest brain map ever reveals fruit fly's neurons in exquisite detail
As of 2022, it had been almost fully decoded by post mortem connectome extraction with microtome!!! 135k neurons.
That article mentions the humongous paper elifesciences.org/articles/66039 elifesciences.org/articles/66039 "A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection" by a group from Janelia Research Campus. THe paper is so large that it makes eLife hang.
Spacelike-separated event by Ciro Santilli 35 Updated +Created
Mathematically, we can decide if two events are timelike-separated or spacelike-separated by just looking at the sign of the spacetime interval between them.
On the light cone, these are events on the left/right part of the cone.
Different observers might not agree on the order of two spacelike-separated events.
Further discussion at Section "Light cone".
The opposite of those events are timelike-separated events.
Lie algebra of a matrix Lie group by Ciro Santilli 35 Updated +Created
For this sub-case, we can define the Lie algebra of a Lie group as the set of all matrices such that for all :
If we fix a given and vary , we obtain a subgroup of . This type of subgroup is known as a one parameter subgroup.
The immediate question is then if every element of can be reached in a unique way (i.e. is the exponential map a bijection). By looking at the matrix logarithm however we conclude that this is not the case for real matrices, but it is for complex matrices.
TODO example it can be seen that the Lie algebra is not closed matrix multiplication, even though the corresponding group is by definition. But it is closed under the Lie bracket operation.
Two-state quantum system by Ciro Santilli 35 Updated +Created
Discrete quantum system model that can model both spin in the Stern-Gerlach experiment or photon polarization in polarizer.
Also known in quantum computing as a qubit :-)
Before reading any further, you must understand heat equation solution with Fourier series, which uses separation of variables.
Once that example is clear, we see that the exact same separation of variables can be done to the Schrödinger equation. If we name the constant of the separation of variables for energy, we get:
  • a time-only part that does not depend on space and does not depend on the Hamiltonian at all. The solution for this part is therefore always the same exponentials for any problem, and this part is therefore "boring":
  • a space-only part that does not depend on time, bud does depend on the Hamiltonian:
    Since this is the only non-trivial part, unlike the time part which is trivial, this spacial part is just called "the time-independent Schrodinger equation".
    Note that the here is not the same as the in the time-dependent Schrodinger equation of course, as that psi is the result of the multiplication of the time and space parts. This is a bit of imprecise terminology, but hey, physics.
Because the time part of the equation is always the same and always trivial to solve, all we have to do to actually solve the Schrodinger equation is to solve the time independent one, and then we can construct the full solution trivially.
Once we've solved the time-independent part for each possible , we can construct a solution exactly as we did in heat equation solution with Fourier series: we make a weighted sum over all possible to match the initial condition, which is analogous to the Fourier series in the case of the heat equation to reach a final full solution:
  • if there are only discretely many possible values of , each possible energy . we proceed
    Equation 3.
    Solution of the Schrodinger equation in terms of the time-independent and time dependent parts
    .
    and this is a solution by selecting such that at time we match the initial condition:
    A finite spectrum shows up in many incredibly important cases:
  • if there are infinitely many values of E, we do something analogous but with an integral instead of a sum. This is called the continuous spectrum. One notable
The fact that this approximation of the initial condition is always possible from is mathematically proven by some version of the spectral theorem based on the fact that The Schrodinger equation Hamiltonian has to be Hermitian and therefore behaves nicely.
It is interesting to note that solving the time-independent Schrodinger equation can also be seen exactly as an eigenvalue equation where:
The only difference from usual matrix eigenvectors is that we are now dealing with an infinite dimensional vector space.
Furthermore:
TODO find/create decent answer.
I think the best answer is something along:
A basic non-precise intuition is that a good model of reality is that electrons do not "interact with one another directly via the electromagnetic field".
A better model happens to be the quantum field theory view that the electromagnetic field interacts with the photon field but not directly with itself, and then the photon field interacts with parts of the electromagnetic field further away.
The more precise statement is that the photon field is a gauge field of the electromagnetic force under local U(1) symmetry, which is described by a Lie group. TODO understand.
This idea was first applied in general relativity, where Einstein understood that the "force of gravity" can be understood just in terms of symmetry and curvature of space. This was later applied o quantum electrodynamics and the entire Standard Model.
Bibliography:
Thermodynamics by Ciro Santilli 35 Updated +Created
Relativistic quantum chemistry by Ciro Santilli 35 Updated +Created
Monstrous moonshine by Ciro Santilli 35 Updated +Created
TODO clickbait, or is it that good?
Landau level by Ciro Santilli 35 Updated +Created
Pitch drop experiment by Ciro Santilli 35 Updated +Created
Sulfur hydrade by Ciro Santilli 35 Updated +Created
Video 1.
Danger by Bayway Refinery
. Source. TODO year.
Derivation of the quantum electrodynamics Lagrangian by Ciro Santilli 35 Updated +Created
Like the rest of the Standard Model Lagrangian, this can be split into two parts:
Video 1.
Deriving the qED Lagrangian by Dietterich Labs (2018)
Source.
As mentioned at the start of the video, he starts with the Dirac equation Lagrangian derived in a previous video. It has nothing to do with electromagnetism specifically.
He notes that that Dirac Lagrangian, besides being globally Lorentz invariant, it also also has a global invariance.
However, it does not have a local invariance if the transformation depends on the point in spacetime.
He doesn't mention it, but I think this is highly desirable, because in general local symmetries of the Lagrangian imply conserved currents, and in this case we want conservation of charges.
To fix that, he adds an extra gauge field (a field of matrices) to the regular derivative, and the resulting derivative has a fancy name: the covariant derivative.
Then finally he notes that this gauge field he had to add has to transform exactly like the electromagnetic four-potential!
So he uses that as the gauge, and also adds in the Maxwell Lagrangian in the same go. It is kind of a guess, but it is a natural guess, and it turns out to be correct.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact