There is no fundamental difference between them, a quantum algorithm is a quantum circuit, which can be seen as a super complicated quantum gate.
Ciro Santilli's hardware 2020-04 Giro Rumble VR Off Road Shoe by
Ciro Santilli 37 Updated 2025-07-16
2021-01-28: used this show for the first time after wearing dhb Dorica MTB Shoe (2020-12) exclusively for a while. It felt much much more comfortable, the Dorica is too narrow. Also this one is much more recessed, and walking with it is much easier. Also, I notice that the intentional asymmetry I had put on cleats is not necessary anymore now that my saddle height is not way too high
At 5C feet are too cold. Compatible overshoes are basically impossible to find: bicycles.stackexchange.com/questions/73589/what-kind-of-overshoes-can-i-use-with-a-large-touring-spd-cycling-shoe-such-as-t
It is not possible to do long walks with this, unlike some websites suggests, especially on hard surfaces like rock, that would be very dangerous because the cleat area will slip. But it is good for shorter walks on grass/mud, and that does open up some good short walk exploration possibilities compared to a road shoe.
Color "Black/Red 20" (but it's actually orange), size 46 www.wiggle.co.uk/giro-rumble-vr-off-road-shoe (archive). Manual says to use Loctite 243 medium strength, first 2.4 Nm bolt torque to test it out and find good position, and then final bolt torque 5-6 Nm unless cleat says less. Starting with Shimano SM-SH56 cleats (archive), which also says provisional torque 2.5 Nm, tightening torque 5-6 Nm.
Integer factorization algorithms better than Shor's algorithm by
Ciro Santilli 37 Updated 2025-07-16
- 2023 www.schneier.com/blog/archives/2023/01/breaking-rsa-with-a-quantum-computer.html comments on "Factoring integers with sublinear resources on a superconducting quantum processor” arxiv.org/pdf/2212.12372.pdf
A group of Chinese researchers have just published a paper claiming that they can—although they have not yet done so—break 2048-bit RSA. This is something to take seriously. It might not be correct, but it’s not obviously wrong.We have long known from Shor’s algorithm that factoring with a quantum computer is easy. But it takes a big quantum computer, on the orders of millions of qbits, to factor anything resembling the key sizes we use today. What the researchers have done is combine classical lattice reduction factoring techniques with a quantum approximate optimization algorithm. This means that they only need a quantum computer with 372 qbits, which is well within what’s possible today. (The IBM Osprey is a 433-qbit quantum computer, for example. Others are on their way as well.)
The Busy beaver scale allows us to gauge the difficulty of proving certain (yet unproven!) mathematical conjectures!
To to this, people have reduced certain mathematical problems to deciding the halting problem of a specific Turing machine.
A good example is perhaps the Goldbach's conjecture. We just make a Turing machine that successively checks for each even number of it is a sum of two primes by naively looping down and trying every possible pair. Let the machine halt if the check fails. So this machine halts iff the Goldbach's conjecture is false! See also Conjecture reduction to a halting problem.
Therefore, if we were able to compute , we would be able to prove those conjectures automatically, by letting the machine run up to , and if it hadn't halted by then, we would know that it would never halt.
Of course, in practice, is generally uncomputable, so we will never know it. And furthermore, even if it were computable, it would take a lot longer than the age of the universe to compute any of it, so it would be useless.
However, philosophically speaking at least, the number of states of the equivalent Turing machine gives us a philosophical idea of the complexity of the problem.
The busy beaver scale is likely mostly useless, since we are able to prove that many non-trivial Turing machines do halt, often by reducing problems to simpler known cases. But still, it is cute.
But maybe, just maybe, reduction to Turing machine form could be useful. E.g. The Busy Beaver Challenge and other attempts to solve BB(5) have come up with large number of automated (usually parametrized up to a certain threshold) Turing machine decider programs that automatically determine if certain (often large numbers of) Turing machines run forever.
So it it not impossible that after some reduction to a standard Turing machine form, some conjecture just gets automatically brute-forced by one of the deciders, this is a path to
Quantum logic gates are needed because you can't compute the matrix explicitly as it grows exponentially by
Ciro Santilli 37 Updated 2025-07-16
One key insight, is that the matrix of a non-trivial quantum circuit is going to be huge, and won't fit into any amount classical memory that can be present in this universe.
This is because the matrix is exponential in the number qubits, and is more than the number of atoms in the universe!
Therefore, off the bat we know that we cannot possibly describe those matrices in an explicit form, but rather must use some kind of shorthand.
But it gets worse.
This is because knowing the matrix, basically means knowing the probability result for all possible outputs for each of the possible inputs.
But if we had those probabilities, our algorithmic problem would already be solved in the first place! We would "just" go over each of those output probabilities (OK, there are of those, which is also an insurmountable problem in itself), and the largest probability would be the answer.
So if we could calculate those probabilities on a classical machine, we would also be able to simulate the quantum computer on the classical machine, and quantum computing would not be able to give exponential speedups, which we know it does.
To see this, consider that for a given input, say and therefore when you multiply it by the unitary matrix of the quantum circuit, what you get is the first column of the unitary matrix of the quantum circuit. And
000 on a 3 qubit machine, the corresponding 8-sized quantum state looks like:000 -> 1000 0000 == (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)001, gives the second column and so on.As a result, to prove that a quantum algorithm is correct, we need to be a bit smarter than "just calculate the full matrix".
Which is why you should now go and read: Section "Quantum algorithm".
This type of thinking links back to how physical experiments relate to quantum computing: a quantum computer realizes a physical experiment to which we cannot calculate the probabilities of outcomes without exponential time.
So for example in the case of a photonic quantum computer, you are not able to calculate from theory the probability that photons will show up on certain wires or not.
These can be used to break cells apart from tissue, and also break up larger DNA or RNA molecules into smaller ones, suitable for sequencing.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





