Relational database management system by Ciro Santilli 35 Updated +Created
History of quantum mechanics bibliography by Ciro Santilli 35 Updated +Created
Radium by Ciro Santilli 35 Updated +Created
Discovered by Marie Curie when she noticed that there was some yet unknown more radioactive element in their raw samples, after uranium and polonium, which she published 6 months prior, had already been separated. Published on December 1989 as: Section "Sur une nouvelle substance fortement radio-active, contenue dans la pechblende".
The uranium 238 decay chain is the main source of naturally occurring radium.
Video 1.
The epic story of radium by Institut de Radioprotection et de Sûreté Nucléaire (2013)
Source.
Photon by Ciro Santilli 35 Updated +Created
Initially light was though of as a wave because it experienced interference as shown by experiments such as:
But then, some key experiments also start suggesting that light is made up of discrete packets:and in the understanding of the 2020 Standard Model the photon is one of the elementary particles.
This duality is fully described mathematically by quantum electrodynamics, where the photon is modelled as a quantized excitation of the photon field.
Nielsen-Ninomiya theorem by Ciro Santilli 35 Updated +Created
As mentioned at Video "Are we living in the matrix? by David Tong (2020)" somehow implies that it is difficult or impossible to simulate physics on a computer. Big news!!!
Semiconductor industry by Ciro Santilli 35 Updated +Created
Integrated circuit by Ciro Santilli 35 Updated +Created
It is quite amazing to read through books such as The Supermen: The Story of Seymour Cray by Charles J. Murray (1997), as it makes you notice that earlier CPUs (all before the 70's) were not made with integrated circuits, but rather smaller pieces glued up on PCBs! E.g. the arithmetic logic unit was actually a discrete component at one point.
The reason for this can also be understood quite clearly by reading books such as Robert Noyce: The Man Behind the Microchip by Leslie Berlin (2006). The first integrated circuits were just too small for this. It was initially unimaginable that a CPU would fit in a single chip! Even just having a very small number of components on a chip was already revolutionary and enough to kick-start the industry. Just imagine how much money any level of integration saved in those early days for production, e.g. as opposed to manually soldering point-to-point constructions. Also the reliability, size an weight gains were amazing. In particular for military and spacial applications originally.
Helium-4 by Ciro Santilli 35 Updated +Created
German nuclear weapons program by Ciro Santilli 35 Updated +Created
Electron crystallography by Ciro Santilli 35 Updated +Created
Crystallography determination with a transmission electron microscopy instead of the more classical X-ray crystallography.
Plotting software by Ciro Santilli 35 Updated +Created
Enzyme inhibitor by Ciro Santilli 35 Updated +Created
d-orbital by Ciro Santilli 35 Updated +Created
Hadean by Ciro Santilli 35 Updated +Created
No life, earth too hot, until formation of water.
Gauge field by Ciro Santilli 35 Updated +Created
A random field you add to make something transform locally the way you want. See e.g.: Video "Deriving the qED Lagrangian by Dietterich Labs (2018)".
Animation of molecular biology processes by Ciro Santilli 35 Updated +Created
Nothing makes the fact that your life is an illusion clearer than animations of molecular biology processes. You just have no idea what is going on inside your own body right now!
And don't get Ciro Santilli started on the brain and the impossibility of free will.
And yet, we live, oblivious to all of it.
Video 1.
ATP synthase in action by HarvardX (2017)
Source.
Video 3.
The Inner Life of the Cell by XVIVO Scientific Animation (2011)
Source. Also created for BioVisions from Harvard University apparently like other amazing videos. It also has the best music.
Video 4.
DNA animations by wehi.tv for Science-Art exhibition by WEHImovies (2018)
Source.
Video 5.
Dengue virus Invades a Cell by XVIVO Scientific Animation (2008)
Source. Reupload by the MRC Laboratory of Molecular Biology, which was reuploaded from www.pbslearningmedia.org/resource/den08.sci.life.stru.dengue/dengue-virus-invades-a-cell/ which was reuploaded from wherever crazy place XVIVO put it.
Most important superconductor material by Ciro Santilli 35 Updated +Created
As of 2023 the most important ones economicaly were:
The main application is magnetic resonance imaging. Both of these are have to be Liquid helium, i.e. they are not "high-temperature superconductor" which is a pain. One big strength they have is that they are metallic, and therefore can made into wires, which is crucial to be able to make electromagnetic coils out of them.
SQUID device by Ciro Santilli 35 Updated +Created
Can be used as a very precise magnetometer.
There are high temperature yttrium barium copper oxide ones that work on liquid nitrogen.
Video 1.
Superconducting Quantum Interference Device by Felipe Contipelli (2019)
Source. Good intuiotionistic video. Some points deserved a bit more detail.
Video 2.
Mishmash of SQUID interviews and talks by Bartek Glowaki
. Source.
The videos come from: www.ascg.msm.cam.ac.uk/lectures/. Vintage.
Mentions that the SQUID device is analogous to a double-slit experiment.
One of the segments is by John Clarke.
Video 3.
Superconducting Quantum Interference Devices by UNSW Physics (2020)
Source.
An experimental lab video for COVID-19 lockdown. Thanks, COVID-19. Presented by a cute and awkward Adam Stewart.
Uses a SQUID device and control system made by STAR Cryoelectronics. We can see Mr. SQUID EB-03 written on the probe and control box, that is their educational product.
As mentioned on the Mr. SQUID specs, it is a high-temperature superconductor, so liquid nitrogen is used.
He then measures the I-V curve on an Agilent Technologies oscilloscope.
Unfortunately, the video doesn't explain very well what is happening behind the scenes, e.g. with a circuit diagram. That is the curse of university laboratory videos: some of them assume that students will have material from other internal sources.
Video 4.
The Ubiquitous SQUID by John Clarke (2018)
Source.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact