Oleg Marichev by Wikipedia Bot 0
Oleg Marichev is a distinguished Russian mathematician known for his contributions to both theoretical and applied mathematics. He has made significant advancements in areas such as functional analysis, operator theory, and mathematical statistics. Throughout his career, Marichev has published numerous research papers and has been involved in various academic and professional activities, including teaching and mentoring students in mathematics.
Magnetic damping by Wikipedia Bot 0
Magnetic damping refers to the process of reducing or controlling the motion of an object using magnetic fields. This phenomenon is commonly observed in systems where magnetic forces act to slow down or stabilize the motion of a moving part, often through the interaction of magnetic fields with electric currents or magnetic materials.
ZIP (file format) by Ciro Santilli 37 Updated +Created
The magnetic radiation reaction force refers to the force experienced by a charged particle that emits electromagnetic radiation due to its acceleration. When a charged particle, such as an electron, is accelerated, it generates electromagnetic waves, which carry energy away from the particle. This emission of radiation leads to a change in the momentum of the particle, resulting in an additional force acting on it known as the radiation reaction force.
Kaon by Ciro Santilli 37 Updated +Created
One strange quark bound with one up quark or a down quark. 6 combinations exist, 4 if we consider antiparticles the same as particles.
karlcow/markdown-testsuite by Ciro Santilli 37 Updated +Created
Ciro Santilli was contributing to this, when CommonMark left private mode and killed it, thus wasting many hours of Ciro's time.
AI brittleness and robustness by Ciro Santilli 37 Updated +Created
Materials with memory, often referred to as "shape memory materials," are a class of advanced materials that can undergo significant changes in shape or properties in response to external stimuli, such as temperature, stress, or electric/magnetic fields. The most well-known examples of shape memory materials include shape memory alloys (SMAs) and shape memory polymers (SMPs).
Electroweak scale by Wikipedia Bot 0
The electroweak scale refers to the energy scale at which the electromagnetic and weak nuclear forces unify into a single force within the framework of the Standard Model of particle physics. This unification occurs at high energies, approximately around \( 10^2 \) to \( 10^3 \) GeV (giga-electronvolts).
Kernel (algebra) by Ciro Santilli 37 Updated +Created
The "method of virtual quanta" is a concept that appears primarily in the context of quantum field theory and theoretical physics. Although it is not a standard or widely-used term like "virtual particles" or "virtual states," it may refer to a method or approach used to describe phenomena involving virtual particles or states in quantum mechanics. In quantum field theory, a virtual particle is an internal line in a Feynman diagram that represents an intermediate state.
Kilogram by Ciro Santilli 37 Updated +Created
Unit of mass.
Defined in the 2019 redefinition of the SI base units via the Planck constant. This was possible due to the development of the Kibble balance.
Optoelectrofluidics is an interdisciplinary field that combines principles of optics, electronics, and fluid dynamics to manipulate fluids at the micro- or nanoscale using light and electric fields. This technology leverages the interactions between light (opto), electric fields (electro), and fluid behaviors (fluidics) to achieve control over fluid movement and properties.
P-form electrodynamics is a type of theoretical framework in the field of physics that extends traditional electrodynamics to higher-dimensional forms. In classical electrodynamics, the electromagnetic field is described using vector fields (the electric field \(\mathbf{E}\) and the magnetic field \(\mathbf{B}\)).
Ponderomotive force refers to a nonlinear force that acts on charged particles in an electromagnetic field, particularly when exposed to strong electromagnetic waves. It arises from the interaction of charged particles (like electrons) with the spatially varying electric field of an electromagnetic wave.
Poynting's theorem is a fundamental principle in electromagnetism that describes the relationship between electromagnetic fields and energy flow. It is named after the British physicist John Henry Poynting, who formulated the theorem in the late 19th century.
Quantum Electrodynamics (QED) is the quantum field theory that describes how light and matter interact. It is one of the most precisely tested theories in physics. Precision tests of QED refer to experimental measurements and theoretical predictions related to the behavior of charged particles and electromagnetic interactions that seek to verify the accuracy and validity of QED.
Rosser's equation refers to a specific mathematical formulation in physics that describes the behavior of certain types of systems. One of the most notable contexts for Rosser's work is in the field of fluid dynamics and chaos theory, particularly in the context of non-linear dynamical systems. In a more specific case, Rosser's equation is associated with the study of the dynamics of rotating fluids and can be involved in models related to turbulence and the behavior of complex systems.
Rugate filter by Wikipedia Bot 0
A Rugate filter is an advanced type of optical filter used in various applications, particularly in the fields of telecommunications, optics, and photonics. Its defining feature is that it utilizes a gradation in refractive index, often achieved through a specific multilayer structure that can be designed to reflect or transmit light over a wide range of wavelengths.
Sum of two squares theorem by Ciro Santilli 37 Updated +Created

Pinned article: ourbigbook/introduction-to-the-ourbigbook-project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact