Bibliography:
- www.youtube.com/watch?v=j1PAxNKB_Zc Manifolds #6 - Tangent Space (Detail) by WHYB maths (2020). This is worth looking into.
- www.youtube.com/watch?v=oxB4aH8h5j4 actually gives a more concrete example. Basically, the vectors are defined by saying "we are doing the Directional derivative of any function along this direction".One thing to remember is that of course, the most convenient way to define a function and to specify a direction, is by using one of the coordinate charts.
- jakobschwichtenberg.com/lie-algebra-able-describe-group/ by Jakob Schwichtenberg
- math.stackexchange.com/questions/1388144/what-exactly-is-a-tangent-vector/2714944 What exactly is a tangent vector? on Stack Exchange
www.youtube.com/watch?v=tq7sb3toTww&list=PLxBAVPVHJPcrNrcEBKbqC_ykiVqfxZgNl&index=19 mentions that it is a bit like a dot product but for a tangent vector to a manifold: it measures how much that vector derives along a given direction.
A metric is a function that give the distance, i.e. a real number, between any two elements of a space.
Because a norm can be induced by an inner product, and the inner product given by the matrix representation of a positive definite symmetric bilinear form, in simple cases metrics can also be represented by a matrix.
Canonical example: Euclidean space.
TODO examples:
- metric space that is not a normed vector space
- norm vs metric: a norm gives size of one element. A metric is the distance between two elements. Given a norm in a space with subtraction, we can obtain a distance function: the metric induced by a norm.
Hierarchy of topological, metric, normed and inner product spaces
. Source. In plain English: the space has no visible holes. If you start walking less and less on each step, you always converge to something that also falls in the space.
One notable example where completeness matters: Lebesgue integral of is complete but Riemann isn't.
Appears to be analogous to the dot product, but also defined for infinite dimensions.
Vs metric:
- a norm is the size of one element. A metric is the distance between two elements.
- a norm is only defined on a vector space. A metric could be defined on something that is not a vector space. Most basic examples however are also vector spaces.
Metric space but where the distance between two distinct points can be zero.
Notable example: Minkowski space.
When a disconnected space is made up of several smaller connected spaces, then each smaller component is called a "connected component" of the larger space.
See for example the
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact






