A gnomon is a geometric figure used primarily in the context of sundials and can also refer to a specific part of a shape in geometry. 1. **Sundial Context**: In sundials, the gnomon is the part that casts a shadow, typically a vertical rod or a triangular blade positioned at an angle. The shadow it casts is used to indicate the time of day by aligning with markings that represent the hours.
A **Polite number** is a positive integer that can be expressed as the sum of two or more consecutive positive integers. For example, the number 15 can be expressed as: - 7 + 8 - 4 + 5 + 6 In contrast, the only positive integers that cannot be classified as polite numbers are the powers of 2 (such as 1, 2, 4, 8, 16, etc.).
The Process Performance Index (Ppk) is a statistical measure used to evaluate the capability of a manufacturing process. It quantifies how well a process can produce output that meets specification limits. Ppk is particularly useful in situations where the process is not centered between the specification limits, as it takes into account both the process variability and the mean of the process output. **Key points about Ppk:** 1.
An arithmetico-geometric sequence is a sequence in which each term is generated by multiplying an arithmetic sequence by a geometric sequence. In simple terms, it combines the elements of arithmetic sequences (which have a constant difference between consecutive terms) and geometric sequences (which have a constant ratio between consecutive terms).
A Lyman-break galaxy (LBG) is a class of distant galaxy observed in the early universe, typically characterized by a significant drop in ultraviolet (UV) light at wavelengths shorter than the Lyman limit (approximately 121.6 nanometers). This Lyman limit corresponds to the transition of hydrogen atoms from their ground state to a higher energy state.
A "cake number" refers to a concept in combinatorial mathematics related to how many pieces a cake can be divided into with a given number of straight cuts. Specifically, the "cake number" is defined as the maximum number of pieces into which a cake can be divided using \( n \) straight cuts in three-dimensional space.
An elliptic divisibility sequence (EDS) is a sequence of integers that arises from the theory of elliptic curves and has interesting divisibility properties. These sequences are generated based on the coordinates of points on an elliptic curve, typically given in Weierstrass form. The properties of EDSs are linked to the arithmetic of elliptic curves, particularly their group structure.
Goodstein's theorem is a result in mathematical logic and number theory that deals with a particular sequence of natural numbers known as Goodstein sequences. The theorem states that every Goodstein sequence eventually terminates at 0, despite the fact that the terms of the sequence can grow extremely large before reaching 0. To understand Goodstein's theorem, we first need to define how a Goodstein sequence is constructed: 1. **Starting Point**: Begin with a natural number \( n \).
A home prime is a concept in number theory that relates to the representation of numbers as sums of prime numbers. Specifically, a home prime is produced by repeatedly factoring a composite number into its prime factors, then concatenating those prime factors (written in order), and repeating the process until a prime number is obtained. Here’s how it works in detail: 1. Start with a composite number. 2. Factor it into its prime factors.
Integer complexity is a concept in number theory that refers to the minimum number of ones needed to express a positive integer \( n \) using just addition, multiplication, and parentheses. The complexity of an integer is denoted as \( C(n) \). For example: - The integer \( 1 \) has a complexity of \( C(1) = 1 \) because it can be represented as simply using one "1".
The Katydid sequence, also known as the "katydid word sequence," is a specific sequence of numbers defined by a recursive process based on the number of syllables in the word "katydid." The word "katydid" has three syllables, which influences the way the sequence is constructed. To generate the Katydid sequence: 1. Start with the first term as \( a_1 = 1 \).
The Ordered Bell number is a concept in combinatorial mathematics that counts the number of ways to partition a set into a certain number of non-empty ordered subsets. More formally, the \( n \)-th Ordered Bell number, denoted as \( B_n^{o} \), gives the number of ways to partition a set of size \( n \) into \( k \) non-empty subsets, where the order of the subsets matters.
A **square-free integer** is an integer that is not divisible by the square of any prime number. In other words, a square-free integer cannot have any prime factor raised to a power greater than one in its prime factorization. For example: - The integer 30 is square-free because its prime factorization is \(2^1 \times 3^1 \times 5^1\); none of the prime factors are squared or higher.
The term "unusual number" can have various meanings depending on the context in which it is used, as it is not a standard mathematical term. Here are a few interpretations that could apply: 1. **Mathematical Context**: In some mathematical discussions, "unusual" might refer to numbers that exhibit unique or rare properties.
100,000,000 is a number that represents one hundred million. It can also be expressed in scientific notation as \(1 \times 10^8\). In terms of everyday quantities, it might refer to financial figures, population counts, or any large metric in various contexts.
The number 1023 is an integer that comes after 1022 and before 1024. It can be expressed in various contexts: 1. **Mathematical Properties**: - It is an odd number. - It can be expressed in binary as 1111111111, which means it is \(2^{10} - 1\), indicating it is one less than a power of two (specifically, \(2^{10} = 1024\)).
An "almost integer" typically refers to a number that is very close to an integer but not exactly one. In various mathematical contexts, this concept can arise in discussions of numerical approximations, rounding, or certain sets of numbers that are nearly whole but slightly off. For example, numbers like 4.999, 2.001, or -3.9999 are considered almost integers because they are very close to the integers 5, 2, and -4, respectively.
The term "power of three" can refer to a couple of different concepts depending on the context: 1. **Mathematical Context**: In mathematics, a power of three refers to any number that can be expressed as \(3^n\), where \(n\) is an integer.
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





