An **algebraic curve** is a curve defined by a polynomial equation in two variables with coefficients in a given field, often a field of real or complex numbers. More formally, an algebraic curve can be described as the set of points (x, y) in the plane that satisfy a polynomial equation of the form: \[ F(x, y) = 0 \] where \( F(x, y) \) is a polynomial in two variables.
A **normed algebra** is a specific type of algebraic structure that combines features of both normed spaces and algebras. To qualify as a normed algebra, a mathematical object must meet the following criteria: 1. **Algebra over a field**: A normed algebra \( A \) is a vector space over a field \( F \) (typically the field of real or complex numbers) equipped with a multiplication operation that is associative and distributive with respect to vector addition.
The term "recurrent word" generally refers to a word that appears multiple times in a given text or context. In the study of language, literature, or data analysis, identifying recurrent words can be important for understanding themes, frequency of concepts, or the focus of a discussion. In computational contexts, such as natural language processing (NLP), recurrent words might also be analyzed to understand patterns in text, to build models for tasks like text classification, sentiment analysis, or topic modeling.
A **topological semigroup** is a mathematical structure that combines elements of both semigroup theory and topology. Specifically, it is a set equipped with a binary operation that is associative and is also endowed with a topology that makes the operation continuous.
A Moody chart, also known as the Moody diagram, is a graphical representation used in fluid mechanics to determine the friction factor for flow in pipes. It provides a way to estimate the pressure loss due to friction in a duct or pipe system, which is critical for engineers and designers when designing fluid transport systems.
The Lyndon–Hochschild–Serre spectral sequence is a tool in algebraic topology and homological algebra that arises in the context of group cohomology and the study of group extensions. It provides a method for computing the cohomology of a group \( G \) by relating it to the cohomology of a normal subgroup \( N \) and the quotient group \( G/N \).
The Hodge bundle is a significant object in the study of algebraic geometry and the theory of Hodge structures. Specifically, the term "Hodge bundle" often refers to a certain vector bundle associated with a smooth projective variety or a complex algebraic variety, particularly when considering its cohomology.
A Jacobian variety is a fundamental concept in algebraic geometry and is associated with algebraic curves. Specifically, it is the complex torus formed by the points of a smooth projective algebraic curve and is used to study the algebraic properties of the curve.
Bikiran Prasad Barua is likely a notable figure or a term that is associated with specific cultural, historical, or regional significance, particularly in the context of Assamese culture or history. If you are looking for detailed information about him, please provide more context or specify the area of interest, such as his contributions, background, or relevance in a particular field. This will help in giving a more accurate and informative response.
A quartic plane curve is a type of algebraic curve defined by a polynomial equation of degree four in two variables, typically \( x \) and \( y \).
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





