Rayleigh-Jeans law by Ciro Santilli 35 Updated +Created
Derived from classical first principles, matches Planck's law for low frequencies, but diverges at higher frequencies.
Planck's law by Ciro Santilli 35 Updated +Created
Used to explain the black-body radiation experiment.
The Quantum Story by Jim Baggott (2011) page 9 mentions that Planck apparently immediately recognized that Planck constant was a new fundamental physical constant, and could have potential applications in the definition of the system of units (TODO where was that published):
Planck wrote that the constants offered: 'the possibility of establishing units of length, mass, time and temperature which are independent of specific bodies or materials and which necessarily maintain their meaning for all time and for all civilizations, even those which are extraterrestrial and nonhuman, constants which therefore can be called "fundamental physical units of measurement".'
This was a visionary insight, and was finally realized in the 2019 redefinition of the SI base units.
Video 1.
Quantum Mechanics 2 - Photons by ViaScience (2012)
Source. Contains a good explanation of how discretization + energy increases with frequency explains the black-body radiation experiment curve: you need more and more energy for small wavelengths, each time higher above the average energy available.
3D Ising model by Ciro Santilli 35 Updated +Created
Atom Computing by Ciro Santilli 35 Updated +Created
These people are cool.
They use optical tweezers to place individual atoms floating in midair, and then do stuff to entangle their nuclear spins.
Ingot by Ciro Santilli 35 Updated +Created
Metal by Ciro Santilli 35 Updated +Created
Type of material by Ciro Santilli 35 Updated +Created
Impenetrable Bose Gas by Ciro Santilli 35 Updated +Created
Two-dimensional electron gas by Ciro Santilli 35 Updated +Created
Liquid by Ciro Santilli 35 Updated +Created
Solid by Ciro Santilli 35 Updated +Created
Superconducting tunnel junction by Ciro Santilli 35 Updated +Created
Specific type of Josephson junction. Probably can be made tiny and in huge numbers through photolithography.
Figure 1.
Illustration of a thin-film superconducting tunnel junction (STJ)
Source. The superconducting material is light blue, the insulating tunnel barrier is black, and the substrate is green.
Video 1.
Quantum Transport, Lecture 14: Josephson effects by Sergey Frolov (2013)
Source. youtu.be/-HUVGWTfaSI?t=878 mentions maskless electron beam lithography being used to produce STJs.
Universal Quantum by Ciro Santilli 35 Updated +Created
As of 2021, their location is a small business park in Haywards Heath, about 15 minutes north of Brighton[ref]
Funding rounds:
Co-founders:
Homepage says only needs cooling to 70 K. So it doesn't work with liquid nitrogen which is 77 K?
Homepage points to foundational paper: www.science.org/doi/10.1126/sciadv.1601540
Video 1.
Universal Quantum emerges out of stealth by University of Sussex (2020)
Source. Explains that a more "traditional" trapped ion quantum computer would user "pairs of lasers", which would require a lot of lasers. Their approach is to try and do it by applying voltages to a microchip instead.
Video 2.
Quantum Computing webinar with Sebastian Weidt by Green Lemon Company (2020)
Source. The sound quality is to bad to stop and listen to, but it presumaby shows the coding office in the background.
Video 3.
Fireside Chat with with Sebastian Weidt by Startup Grind Brighton (2022)
Source. Very basic target audience:
Josephson current by Ciro Santilli 35 Updated +Created
Maximum current that can flow across a Josephson junction, as can be directly seen from the Josephson equations.
Is a fixed characteristic value of the physical construction of the junction.
Josephson equations by Ciro Santilli 35 Updated +Created
Two equations derived from first principles by Brian Josephson that characterize the device, somewhat like an I-V curve:
where:
  • : Josephson current
  • : the Josephson phase, a function defined by the second equation plus initial conditions
  • : input voltage of the system
  • : current across the junction, determined by the input voltage
Note how these equations are not a typical I-V curve, as they are not an instantaneous dependency between voltage and current: the history of the voltage matters! Or in other words, the system has an internal state, represented by the Josephson phase at a given point in time.
To understand them better, it is important to look at some important cases separately:
Cirac–Zoller controlled-NOT gate by Ciro Santilli 35 Updated +Created
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Video 1.
Intro to OurBigBook
. Source.
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
    Video 2.
    OurBigBook Web topics demo
    . Source.
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    • to OurBigBook.com to get awesome multi-user features like topics and likes
    • as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 5. . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact