Commutative ring by Ciro Santilli 40 Updated 2025-07-16
Two ways to see it:
Division ring by Ciro Santilli 40 Updated 2025-07-16
Two ways to see it:
accounts for them all, which we know how to do due to the classification of finite fields.
So we see that the classification is quite simple, much like the classification of finite fields, and in strict opposition to the classification of finite simple groups (not to mention the 2023 lack of classification for non simple finite groups!)
Field (mathematics) by Ciro Santilli 40 Updated 2025-07-16
A ring where multiplication is commutative and there is always an inverse.
A field can be seen as an Abelian group that has two group operations defined on it: addition and multiplication.
And then, besides each of the two operations obeying the group axioms individually, and they are compatible between themselves according to the distributive property.
Basically the nicest, least restrictive, 2-operation type of algebra.
Distributive property by Ciro Santilli 40 Updated 2025-07-16
One of the defining properties of algebraic structure with two operations such as ring and field:
This property shows how the two operations interact.
There's exactly one field per prime power, so all we need to specify a field is give its order, notated e.g. as .
Every element of a finite field satisfies .
It is interesting to compare this result philosophically with the classification of finite groups: fields are more constrained as they have to have two operations, and this leads to a much simpler classification!
GF(4) by Ciro Santilli 40 Updated 2025-07-16
Ciro Santilli tried to add this example to Wikipedia, but it was reverted, so here we are, see also: Section "Deletionism on Wikipedia".
This is a good first example of a field of a finite field of non-prime order, this one is a prime power order instead.
, so one way to represent the elements of the field will be the to use the 4 polynomials of degree 1 over GF(2):
  • 0X + 0
  • 0X + 1
  • 1X + 0
  • 1X + 1
Note that we refer in this definition to anther field, but that is fine, because we only refer to fields of prime order such as GF(2), because we are dealing with prime powers only. And we have already defined fields of prime order easily previously with modular arithmetic.
Over GF(2), there is only one irreducible polynomial of degree 2:
Addition is defined element-wise with modular arithmetic modulo 2 as defined over GF(2), e.g.:
Multiplication is done modulo , which ensures that the result is also of degree 1.
For example first we do a regular multiplication:
Without modulo, that would not be one of the elements of the field anymore due to the !
So we take the modulo, we note that:
and by the definition of modulo:
which is the final result of the multiplication.
TODO show how taking a reducible polynomial for modulo fails. Presumably it is for a similar reason to why things fail for the prime case.
Evil by Ciro Santilli 40 Updated 2025-07-16
Things that are not nice such as:
Elliptic curve by Ciro Santilli 40 Updated 2025-07-16
An elliptic curve is defined by numbers and . The curve is the set of all points of the real plane that satisfy the Equation 1. "Definition of the elliptic curves"
Equation 1.
Definition of the elliptic curves
.
Figure 1.
Plots of real elliptic curves for various values of and
. Source.
Equation 1. "Definition of the elliptic curves" definies elliptic curves over any field, it doesn't have to the real numbers. Notably, the definition also works for finite fields, leading to elliptic curve over a finite fields, which are the ones used in Elliptic-curve Diffie-Hellman cyprotgraphy.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact