Heinrich Hertz's main initial experiment used a spark-gap transmitter. It is not something that transmits recorded sounds like voice: it only transmits noisy beeps. And as such was used for wireless telegraphy.
- a piezo igniter from a barbequeue lighter
- a more powerful home-made transformer
Hertz and Radio waves Explained by PhysicsHigh (2016)
Source. Simple schematics showing the basics of the experiments. No choice of components rationale.Era of quantum computing before we reach physical errors small enough to do perfect quantum error correction as demonstrated by the quantum threshold theorem.
Lists of the most promising implementations:
As of 2020, the hottest by far are:
Super quick overview of the main types of quantum computer physical implementations, so doesn't any much to a quick Google.
He says he's going to make a series about it, so then something useful might actually come out. The first one was: Video "How to Turn Superconductors Into A Quantum Computer by Lukas's Lab (2023)", but it is still too basic.
The author's full name is Lukas Baker, www.linkedin.com/in/lukasbaker1331/, found with Google reverse image search, even though the LinkedIn image is very slightly different from the YouTube one.
This ISA basically completely dominated the smartphone market of the 2010s and beyond, but it started appearing in other areas as the end of Moore's law made it more economical logical for large companies to start developing their own semiconductor, e.g. Google custom silicon, Amazon custom silicon.
It is exciting to see ARM entering the server, desktop and supercomputer market circa 2020, beyond its dominant mobile position and roots.
Ciro Santilli likes to see the underdogs rise, and bite off dominant ones.
Basically, as long as were a huge company seeking to develop a CPU and able to control your own ecosystem independently of Windows' desktop domination (held by the need for backward compatibility with a billion end user programs), ARM would be a possibility on your mind.
- in 2020, the Fugaku supercomputer, which uses an ARM-based Fujitsu designed chip, because the number 1 fastest supercomputer in TOP500: www.top500.org/lists/top500/2021/11/It was later beaten by another x86 supercomputer www.top500.org/lists/top500/2022/06/, but the message was clearly heard.
- 2012 hackaday.com/2012/07/09/pedal-powered-32-core-arm-linux-server/ pedal-powered 32-core Arm Linux server. A publicity stunt, but still, cool.
- AWS Graviton
Founding CEO of Oxford Quantum Circuits.
As mentioned at www.investmentmonitor.ai/tech/innovation/in-conversation-with-oxford-quantum-circuits-ilana-wisby she is not the original tech person:Did they mean Oxford Sciences Enterprises? There's nothing called "Oxford Science and Innovation" on Google. Yes, it is just a typo oxfordscienceenterprises.com/news/meet-the-founder-ilana-wisby-ceo-of-oxford-quantum-circuits/ says it clearly:
she was finally headhunted by Oxford Science and Innovation to become the founding CEO of OQC. The company was spun out of Oxford University's physics department in 2017, at which point Wisby was handed "a laptop and a patent".
I was headhunted by Oxford Sciences Enterprises to be the founding CEO of OQC.
oxfordquantumcircuits.com/story mentions that the core patent was by Dr. Peter Leek: www.linkedin.com/in/peter-leek-00954b62/
TODO understand.
Trapping Ions for Quantum Computing by Diana Craik (2019)
Source. A basic introduction, but very concrete, with only a bit of math it might be amazing:Sounds complicated, several technologies need to work together for that to work! Videos of ions moving are from www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing.
- youtu.be/j1SKprQIkyE?t=217 you need ultra-high vacuum
- youtu.be/j1SKprQIkyE?t=257 you put the Calcium on a "calcium oven", heat it up, and make it evaporates a little bit
- youtu.be/j1SKprQIkyE?t=289 you need lasers. You shine the laser on the calcium atom to eject one of the two valence electrons from it. Though e.g. Universal Quantum is trying to do away with them, because alignment for thousands or millions of particles would be difficult.
- youtu.be/j1SKprQIkyE?t=518 keeping all surrounding electrodes positive would be unstable. So they instead alternate electrode quickly between plus and minus
- youtu.be/j1SKprQIkyE?t=643 talks about the alternative, of doing it just with electrodes on a chip, which is easier to manufacture. They fly at about 100 microns above the trap. And you can have multiple ions per chip.
- youtu.be/j1SKprQIkyE?t=1165 using microwaves you can flip the spin of the electron, or put it into a superposition. From more reading, we understand that she is talking about a hyperfine transition, which often happen in the microwave area.
- youtu.be/j1SKprQIkyE?t=1210 talks about making quantum gates. You have to put the ions into a magnetic field at one of the two resonance frequencies of the system. Presumably what is meant is an inhomogenous magnetic field as in the Stern-Gerlach experiment.This is the hard and interesting part. It is not clear why the atoms become coupled in any way. Is it due to electric repulsion?She is presumably describing the Cirac–Zoller CNOT gate.
How To Trap Particles in a Particle Accelerator by the Royal Institution (2016)
Source. Demonstrates trapping pollen particles in an alternating field.- youtu.be/lJOuPmI--5c?t=1601 Cirac–Zoller CNOT gate was the first 2 qubit gate. Explains it more or less.
Introduction to quantum optics by Peter Zoller (2018)
Source. THE Zoller from Cirac–Zoller CNOT gate talks about his gate.- www.youtube.com/watch?v=W3l0QPEnaq0&t=427s shows that the state is split between two options: center of mass mode (ions move in same direction), and strechmode (atoms move in opposite directions)
- youtu.be/W3l0QPEnaq0?t=658 shows a schematic of the experiment
- youtu.be/9aOLwjUZLm0?t=1216 superconducting qubits are bad because it is harder to ensure that they are all the same
- youtu.be/9aOLwjUZLm0?t=1270 our wires are provided by lasers. Gives example of ytterbium, which has nice frequencies for practical laser choice. Ytterbium ends in 6s2 5d1, so they must remove the 5d1 electron? But then you are left with 2 electrons in 6s2, can you just change their spins at will without problem?
- youtu.be/9aOLwjUZLm0?t=1391 a single atom actually reflects 1% of the input laser, not bad!
- youtu.be/9aOLwjUZLm0?t=1475 a transition that they want to drive in Ytterbium has 355 nm, which is easy to generate TODO why.
- youtu.be/9aOLwjUZLm0?t=1520 mentions that 351 would be much harder, e.g. as used in inertially confied fusion, takes up a room
- youtu.be/9aOLwjUZLm0?t=1539 what they use: a pulsed laser. It is made primarily for photolithography, Coherent, Inc. makes 200 of them a year, so it is reliable stuff and easy to operate. At www.coherent.com/lasers/nanosecond/avia-nx we can see some of their 355 offers. archive.ph/wip/JKuHI shows a used system going for 4500 USD.
- youtu.be/9aOLwjUZLm0?t=1584 Cirac and Zoller proposed the idea of using entangled ions soon after they heard about Shor's algorithm in 1995
- youtu.be/9aOLwjUZLm0?t=1641 you use optical tweezers to move the pairs of ions you want to entangle. This means shining a laser on two ions at the same time. Their movement depends on their spin, which is already in a superposition. If both move up, their distance stats the same, so the Coulomb interaction is unchanged. But if they are different, then one goes up and the other down, distance increases due to the diagonal, and energy is lower.
- youtu.be/9aOLwjUZLm0?t=1939 S. Debnah 2016 Nature experiment with a pentagon. Well, it is not a pentagon, they are just in a linear chain, the pentagon is just to convey the full connectivity. Maybe also Satanism. Anyways. This point also mentions usage of an acousto-optic modulator to select which atoms we want to act on. On the other side, a simpler wide laser is used that hits all atoms (optical tweezers are literally like tweezers in the sense that you use two lasers). Later on mentions that the modulator is from Harris, later merged with L3, so: www.l3harris.com/all-capabilities/acousto-optic-solutions
- youtu.be/9aOLwjUZLm0?t=2119 Bernstein-Vazirani algorithm. This to illustrate better connectivity of their ion approach compared to an IBM quantum computer, which is a superconducting quantum computer
- youtu.be/9aOLwjUZLm0?t=2354 hidden shift algorithm
- youtu.be/9aOLwjUZLm0?t=2740 Zhang et al. Nature 2017 paper about a 53 ion system that calculates something that cannot be classically calculated. Not fully controllable though, so more of a continuous-variable quantum information operation.
- youtu.be/9aOLwjUZLm0?t=2923 usage of cooling to 4 K to get lower pressures on top of vacuum. Before this point all experiments were room temperature. Shows image of refrigerator labelled Janis cooler, presumably something like: qd-uki.co.uk/cryogenics/janis-recirculating-gas-coolers/
- youtu.be/9aOLwjUZLm0?t=2962 qubit vs gates plot by H. Neven
- youtu.be/9aOLwjUZLm0?t=3108 modular trapped ion quantum computer ideas. Mentions experiment with 2 separate systems with optical link. Miniaturization and their black box. Mentions again that their chip is from Sandia. Amazing how you pronounce that.
Merger between Cambridge Quantum Computing, which does quantum software, and Honeywell Quantum Solutions, which does the hardware.
When an exception happens, the CPU jumps to an address that the OS had previously registered as the fault handler. This is usually done at boot time by the OS.
This could happen for example due to a programming error:but there are cases where it is not a bug, for example in Linux when:
int *is = malloc(1);
is[2] = 1;- the program wants to increase its stack.
- the page was swapped to disk.The OS will need to do some work behind the processes back to get the page back into RAM.
The key experiment/phenomena that sets the basis for photonic quantum computing is the two photon interference experiment.
The physical representation of the information encoding is very easy to understand:
- input: we choose to put or not photons into certain wires or no
- interaction: two wires pass very nearby at some point, and photons travelling on either of them can jump to the other one and interact with the other photons
- output: the probabilities that photos photons will go out through one wire or another
Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)
Source. This is a good introduction to a photonic quantum computer. Highly recommended.- youtube.com/watch?v=7wCBkAQYBZA&t=1285 shows an experimental curve for a two photon interference experiment by Hong, Ou, Mandel (1987)
- youtube.com/watch?v=7wCBkAQYBZA&t=1440 shows a KLM CNOT gate
- youtube.com/watch?v=7wCBkAQYBZA&t=2831 discusses the quantum error correction scheme for photonic QC based on the idea of the "Raussendorf unit cell"
Funding:
Some people call it "operating System".
The main parts of those systems are:
- sending multiple signals at very precise times to the system
- reading out some quantum error correction bits and sending error correcting signals back in a control loop
One important area of research and development of quantum computing is the development of benchmarks that allow us to compare different quantum computers to decide which one is more powerful than the other.
Ideally, we would like to be able to have a single number that predicts which computer is more powerful than the other for a wide range of algorithms.
However, much like in CPU benchmarking, this is a very complex problem, since different algorithms might perform differently in different architectures, making it very hard to sum up the architecture's capabilities to a single number as we would like.
The only thing that is directly comparable across computers is how two machines perform for a single algorithm, but we want a single number that is representative of many algorithms.
For example, the number of qubits would be a simple naive choice of such performance predictor number. But it is very imprecise, since other factors are also very important:
Quantum volume is another less naive attempt at such metric.
It was mind blowing when in 2022, after several years of selection, one of the 7 finalists was broken on a classical computer, not even in a quantum computer! news.ycombinator.com/item?id=30466063 | eprint.iacr.org/2022/214 Breaking Rainbow Takes a Weekend on a Laptop by Ward Beullens. Dude announced he had a break a few days before submission: twitter.com/WardBeullens/status/1492780462028300290 On Twitter. He's so young. Epic.
Edit: and then, after the third round, things were a bit unclear, so they made a fourth round with 4 choices out of the 7 from round 3, and in August 2022 one of the four was broken again on a classic CPU!!! OMG: arstechnica.com/information-technology/2022/08/sike-once-a-post-quantum-encryption-contender-is-koed-in-nist-smackdown/
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





