Electron Interference by the Italian National Research Council (1976)
Source. Institutional video about the 1974 single electron experiment by Merli, Missiroli, Pozzi from the University of Bologna.
Then actually show the result live on a television screen, where you see the interference patterns only at higher electron currents, and then on photographic film.
This was elected "the most beautiful experiment" by readers of Physics World in 2002.
This useless video doesn't really explain anything, he just says "it's needed because the equation has an in it".
The real explanation is: they are not needed, they just allow us to write the equation in a shorter form, which is always a win: physics.stackexchange.com/questions/32422/qm-without-complex-numbers/557600#557600
Time-independent Schrödinger equation for a free one dimensional particle by
Ciro Santilli 37 Updated 2025-07-16
so the solution is:We notice that the solution has continuous spectrum, since any value of can provide a solution.
Looking at the energy level of the Schrödinger equation solution for the hydrogen atom, you would guess that for multi-electron atoms that only the principal quantum number would matter, azimuthal quantum number getting filled randomly.
However, orbitals energies for large atoms don't increase in energy like those of hydrogen due to electron-electron interactions.
In particular, the following would not be naively expected:
This rule is only an approximation, there exist exceptions to the Madelung energy ordering rule.
Bibliography:
- www.youtube.com/watch?v=Fu1BGGeyqHQ&list=PL54DF0652B30D99A4&index=63 "K6. The Pauli Equation" by doctorphys
Spin is one of the defining properties of elementary particles, i.e. number that describes how an elementary particle behaves, much like electric charge and mass.
The approach shown in this section: Section "Spin comes naturally when adding relativity to quantum mechanics" shows what the spin number actually means in general. As shown there, the spin number it is a direct consequence of having the laws of nature be Lorentz invariant. Different spin numbers are just different ways in which this can be achieved as per different Representation of the Lorentz group.
Video 1. "Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)" explains nicely how:
- incorporated into the Dirac equation as a natural consequence of special relativity corrections, but not naturally present in the Schrödinger equation, see also: the Dirac equation predicts spin
- photon spin can be either linear or circular
- the linear one can be made from a superposition of circular ones
- straight antennas produce linearly polarized photos, and Helical antennas circularly polarized ones
- a jump between 2s and 2p in an atom changes angular momentum. Therefore, the photon must carry angular momentum as well as energy.
- cannot be classically explained, because even for a very large estimate of the electron size, its surface would have to spin faster than light to achieve that magnetic momentum with the known electron charge
- as shown at Video "Quantum Mechanics 12b - Dirac Equation II by ViaScience (2015)", observers in different frames of reference see different spin states
Quantum Spin - Visualizing the physics and mathematics by Physics Videos by Eugene Khutoryansky (2016)
Source. A way to write the wavefunction such that the position operator is:i.e., a function that takes the wavefunction as input, and outputs another function:
If you believe that mathematicians took care of continuous spectrum for us and that everything just works, the most concrete and direct thing that this representation tells us is that:equals:
the probability of finding a particle between and at time
where:
Remember that is a 4-vetor, gamma matrices are 4x4 matrices, so the whole thing comes down to a dot product of two 4-vectors, with a modified by matrix multiplication/derivatives, and the result is a scalar, as expected for a Lagrangian.
Like any other Lagrangian, you can then recover the Dirac equation, which is the corresponding equations of motion, by applying the Euler-Lagrange equation to the Lagrangian.
Turing machine acceleration refers to using high level understanding of specific properties of specific Turing machines to be able to simulate them much fatser than naively running the simulation as usual.
Acceleration allows one to use simulation to find infinite loops that might be very long, and would not be otherwise spotted without acceleration.
This is for example the case of www.sligocki.com/2023/03/13/skelet-1-infinite.html proof of Skelet machine #1.
What they presented on richard Feynman's first seminar in 1941. Does not include quantum mechanics it seems.
Project trying to compute BB(5) once and for all. Notably it has better presentation and organization than any other previous effort, and appears to have grouped everyone who cares about the topic as of the early 2020s.
Very cool initiative!
By 2023, they had basically decided every machine: discuss.bbchallenge.org/t/the-30-to-34-ctl-holdouts-from-bb-5/141
The last value we will likely every know for the busy beaver function! BB(6) is likely completely out of reach forever.
By 2023, it had basically been decided by the The Busy Beaver Challenge as mentioned at: discuss.bbchallenge.org/t/the-30-to-34-ctl-holdouts-from-bb-5/141, pending only further verification. It is going to be one of those highly computational proofs that will be needed to be formally verified for people to finally settle.
As that project beautifully puts it, as of 2023 prior to full resolution, this can be considered the:on the Busy beaver scale.
simplest open problem in mathematics
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





