The Thirring-Wess model is a theoretical framework used in quantum field theory that describes the dynamics of fermionic fields. It is primarily a two-dimensional model that provides insights into the behavior of quantum fields with interactions. The model is notable because it exhibits non-trivial interactions between fermions and can lead to rich phenomena such as spontaneous symmetry breaking and the emergence of various phases. The model is characterized by its Lagrangian density, which typically includes terms for free fermions and interaction terms.
Topological quantum numbers are integer values that arise in the context of topological phases of matter and quantum field theories, particularly in condensed matter physics. They characterize different phases of a system based on their global properties rather than local properties, which can be crucial for understanding phenomena that are stable against local perturbations. A few key points about topological quantum numbers are: 1. **Robustness**: Topological quantum numbers are robust against small perturbations or changes in the system.
The Mathematical Optimization Society (MOS) is an international organization dedicated to promoting the study and application of mathematical optimization. Founded in 1978, the society serves as a platform for researchers, educators, and practitioners in the field of optimization to share knowledge, collaborate, and advance the theory and methods related to optimization. MOS provides a variety of resources and activities, including: 1. **Publications**: The society publishes journals and newsletters that feature original research, survey articles, and news related to optimization.
The Swedish Operations Research Association (Svenska Operativa Föreningen, SOF) is a professional organization in Sweden that focuses on the field of operations research (OR). The association aims to promote the development, practice, and education of operations research methodologies and applications within various industries. It serves as a platform for researchers, practitioners, and students interested in operations research to connect, collaborate, and share knowledge.
Anita Schöbel is a respected figure in the field of mathematics and statistics, particularly known for her contributions to operations research and optimization. She has been involved in various academic and research pursuits, particularly in areas related to mathematical programming and decision-making processes.
M. Grazia Speranza is known for her work in the field of operations research, particularly in areas such as optimization, logistics, and decision-making processes. She has contributed significantly to the academic community through research, publications, and participation in conferences related to operations research and applied mathematics. Her work often focuses on practical applications of optimization techniques in various domains, including transportation and supply chain management.
Michael Trick is a well-known figure in the field of operations research and management sciences. He is a professor at Carnegie Mellon University, where he has contributed significantly to optimization, especially in the areas of integer programming and combinatorial optimization. His work often involves developing algorithms and computational methods to solve complex decision-making problems. In addition to his academic contributions, Trick is also recognized for his involvement in the operations research community, including organizing conferences and workshops.
As indicated by its name, the journal contains mostly short letters sent to the editor, often 2 or 3 pages long, which allows for a faster publication cycle and dissemination of new results. This is notably useful for experimental physics.
Chemistry by Ciro Santilli 40 Updated 2025-07-16
Chemistry is fun. Too hard for precise physics (pre quantum computing, see also quantum chemistry), but not too hard for some maths like social sciences.
And it underpins biology.
Video 1.
100 Greatest Discoveries - Chemistry by the Discovery Channel (2005)
Source. Pretty good within what you can expect from popular science. The discovery selection is solid, and he interviews 3 Nobel Prize laureates, only one about stuff they invented, so you can see their faces. The short non-precise scenes of epoch are also pleasing. Part of 100 Greatest Discoveries by the Discovery Channel (2004-2005).
Atom by Ciro Santilli 40 Updated 2025-07-16
Theory that atoms exist, i.e. matter is not continuous.
Much before atoms were thought to be "experimentally real", chemists from the 19th century already used "conceptual atoms" as units for the proportions observed in macroscopic chemical reactions, e.g. . The thing is, there was still the possibility that those proportions were made up of something continuous that for some reason could only combine in the given proportions, so the atoms could only be strictly consider calculatory devices pending further evidence.
Subtle is the Lord by Abraham Pais (1982) chapter 5 "The reality of molecules" has some good mentions. Notably, physicists generally came to believe in atoms earlier than chemists, because the phenomena they were most interested in, e.g. pressure in the ideal gas law, and then Maxwell-Boltzmann statistics just scream atoms more loudly than chemical reactions, as they saw that these phenomena could be explained to some degree by traditional mechanics of little balls.
Confusion around the probabilistic nature of the second law of thermodynamics was also used as a physical counterargument by some. Pais mentions that Wilhelm Ostwald notably argued that the time reversibility of classical mechanics + the second law being a fundamental law of physics (and not just probabilistic, which is the correct hypothesis as we now understand) must imply that atoms are not classic billiard balls, otherwise the second law could be broken.
Pais also mentions that a big "chemical" breakthrough was isomers suggest that atoms exist.
Very direct evidence evidence:
Less direct evidence:
Subtle is the Lord by Abraham Pais (1982) page 40 mentions several methods that Einstein used to "prove" that atoms were real. Perhaps the greatest argument of all is that several unrelated methods give the same estimates of atom size/mass:
Bohr model by Ciro Santilli 40 Updated 2025-07-16
Was the first model to explain the Balmer series, notably linking atomic spectra to the Planck constant and therefore to other initial quantum mechanical observations.
This was one of the first major models that just said:
I give up, I can't tie this to classical physics in any way, let's just roll with it, OK?
It still treats electrons as little points spinning around the nucleus, but it makes the non-classical postulate that only certain angular momentums (and therefore energies) are allowed.
Atomic clock by Ciro Santilli 40 Updated 2025-07-16
Video 1.
How an atomic clock works, and its use in the global positioning system (GPS) by EngineerGuy (2012)
Source. Shows how conceptually an atomic clock is based on a feedback loop of two hyperfine structure states of caesium atoms (non-radioactive caesium-133 as clarified by the Wikipedia page). Like a quartz clock, it also relies on the piezoelectricity of quartz, but unlike the quartz clock, the quartz is not shaped like a tuning fork, and has a much larger resonating frequency of about 7 MHz. The feedback is completed by producing photons that resonate at the right frequency to excite the caesium.
Video 2.
Inside the HP 5061A Cesium Clock by CuriousMarc (2020)
Source.
A similar model was used in the Hafele-Keating experiment to test special relativity on two planes flying in opposite directions. Miniaturization was key.
Contains a disposable tube with 6g of Caesium. You boil it, so when it runs out, you change the tube, 40k USD. Their tube is made by Agilent Technologies, so a replacement since that opened in 1999, and the original machine is from the 60s.
Detection is done with an electron multiplier.
youtu.be/eOti3kKWX-c?t=1166 They compare it with their 100 dollar GPS disciplined oscillator, since GPS satellites have atomic clocks in them.
Video 3.
Quick presentation of the atomic clock at the National Physical Laboratory (2010)
Source. Their super accurate setup first does laser cooling on the caesium atoms.
Bohr-Sommerfeld model by Ciro Santilli 40 Updated 2025-07-16
Refinement of the Bohr model that starts to take quantum angular momentum into account in order to explain missing lines that would have been otherwise observed TODO specific example of such line.
They are not observe because they would violate the conservation of angular momentum.
Gas chromatography by Ciro Santilli 40 Updated 2025-07-16
This technique is crazy! It allows to both:
  • separate gaseous mixtures
  • identify gaseous compounds
You actually see discrete peaks at different minute counts on the other end.
It is based on how much the gas interacts with the column.
Detection is usually done burning the sample to ionize it when it comes out, and then you measure the current produced.
The procedure remind you a bit of gel electrophoresis, except that it is in gaseous phase.
Video 1.
Gas chromatography by Quick Biochemistry Basics (2019)
Source.
Video 2.
How I invented the electron capture detector interview with James Lovelock by Web of Stories (2001)
Source. He mentions how scientists had to make their own tools during the 40s/60s. Then how gas chromatography was invented at the National Institute for Medical Research and gained a Nobel Prize. Lovelock came in improving the detection part of things.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact