Contains the path to the dynamic loader, i.e.
/lib64/ld-linux-x86-64.so.2 in Ubuntu 18.10. Explained at: stackoverflow.com/questions/8040631/checking-if-a-binary-compiled-with-static/55664341#55664341file 5.36 however does use it to display file type as explained at: stackoverflow.com/questions/34519521/why-does-gcc-create-a-shared-object-instead-of-an-executable-binary-according-to/55704865#55704865Whenever Ciro Santilli learns about molecular biology, he can't help but to feel that it feels like programming, and notably systems programming and computer hardware design.
In some sense, the comparison is obvious: DNA is clearly a programmable medium like any assembly language, but still, systems programming did give Ciro some further feelings.
- The most important analogy perhaps is observability, or more precisely the lack of it. For the computer, this is described at: The lower level you go into a computer, the harder it is to observe things.And then, when Ciro started learning a bit about biology techniques, he started to feel the exact same thing.For example when he played with E. Coli Whole Cell Model by Covert Lab, the main thing Ciro felt was: it is going to be hard to verify any of this data, because it is hard/impossible to know the concentration of each element in a cell as a function of time.More generally of course, this is exactly why making any biology discovery is so hard: we can't easily see what's going on inside the cell, and have to resort to indirect ways of doing so..This exact idea was highlighted by I should have loved biology by James Somers:
For a computer scientist, a biologist's methods can seem insane; the trouble comes from the fact that cells are too small, too numerous, too complex to analyze the way a programmer would, say in a step-by-step debugger.
And then just like in software, some of the methods biologists use to overcome the lack of visibility have direct software analogues:- add instrumentation to cells, e.g. GFP tagging comes to mind
- emulation, e.g. E. Coli Whole Cell Model by Covert Lab
- The boot process is another one. E.g. in x86 the way that you start in 16-bit mode, largely compatible into the 70's, then move to 32-bit and finally 64, does feel a lot the way a earlier stages of embryo development looks more and more like more ancient animals.
Ciro likes to think that maybe that is why a hardcore systems programmer like Bert Hubert got into molecular biology.
Some other people who mention similar things:
- I should have loved biology by James Somers highlights the computer abstraction layer analogy between the two:
One of the things Ciro Santilli really likes, see: Linux Kernel Module Cheat.
Great way to understand how operating systems work, which Ciro Santilli used extensively in his Linux Kernel Module Cheat.
Ciro Santilli has some good related articles listed under: Section "The best articles by Ciro Santilli".
User mode emulation refers to the ability of certain emulators to emulate userland code running on top of a specific operating system, usually Linux.
For example, QEMU allows you to run a variety of userland ELF programs directly on it, without an underlying Linux kernel running.
User mode emulation is achieved by implementing system calls and special filesystems such as
/dev manually on the emulator one by one.The general tradeoff is that simulation is less acurate as it may lack certain highly advanced kernel functionality you haven't implemented yet. But it is much easier to run executables with it, and you don't have to wait for boot to finish before running, you just run executables directly from the command line.
This is especially interesting for user mode emulation.
Notable mentions:
Other notable people that are likely also awesome but Ciro has less familiarity with their contributions:
- Dwayne Richard Hipp from SQLite
- Daniel Stenberg from cURL
- Michael Niedermayer also from FFmpeg. ikaruga.co.uk/~snacky/mn.html highlights his brutal directness and efficiency, and sometimes sense of humour
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.Homepage: eli.thegreenplace.net/
Also has many great contributions on Stack Overflow: stackoverflow.com/users/8206/eli-bendersky
As of 2016, Eli worked at Google (reference). TODO before that, I had found his earlier info previously but lost it.
Eli focuses mostly on compiler toolchains.
He also has some mathematics stuff, so cute: eli.thegreenplace.net/2015/change-of-basis-in-linear-algebra/
Creator of QEMU and FFmpeg, both of which Ciro Santilli deeply respects. And a bunch other random stuff.
What is shocking about Fabrice this is that both are insanely important software that Ciro Santilli really likes, and both seem to be completely unrelated subjects!
Google made billions on top of this dude:
- FFmpeg is the backend of YouTube
- QEMU is the default emulator for Android Studio as of 2019, which Android developers use by default under the hood to develop Android Apps on their desktop without the need for a real device.
At last but not least, Fabrice also studied in the same school that Ciro Santilli studied in France, École Polytechnique.
It is a shame that he keeps such a low profile, there are no videos of him on the web, and he declines interviews.
Another surprising fact is that Fabrice has not worked for the "Big Tech Companies" as far as can be publicly seen, but rather mostly on smaller companies that he co-founded: www.quora.com/Computer-Programmers/Computer-Programmers-Where-is-Fabrice-Bellard-employed
And he's also into some completely random projcts unsurprisingly:
- www.computerhistory.org/tdih/january/6/ Computer Scientist Fabrice Bellard Announces Computing Pi to Record Number of Digits
Bibliography:
- smartbear.com/de/blog/2011/fabrice-bellard-portrait-of-a-super-productive-pro/ contains a list of his projects as of 2011
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact








